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Objectives

Introduction to distributional semantics.
Develop and use python scripts.
Build a probabilistic thesaurus from corpora.
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Lexical Semantic Models

Denotational meaning
Structural meaning
Universal meaning
Relational meaning
Distributional meaning
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Denotational meaning

Lexical meaning
Two types of meaning (according to ”The Foundations of Frege’s Logic” [Tichý 1988]):

Denotation Relation between a word and its meaning out of context. Two types
of denotation:

Extension : Set of entities or individuals associated to a word
by denotation. For instance, the set of all dogs is
the extension of the word dog.

Intension : Set of properties and features shared by an
extension or entity set. .

Reference Relation between a word inserted in a discourse and the particular
entity the word points out: meaning contextualized and grounded by
the discourse:
Example: the reference of dog selects for a specific dog in (“My dog is Trosky”)

CiTIUS Design and use of linguistic tools
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Lexical meaning and Structuralism

Structural semantics and componential analysis
Lexical field: Set of lexemes sharing some small
units of content, but which are opposed by minimal
differences or semes (Eugenio Coseriu).
Seme: the smallest unit of meaning used as a
distinctive feature.
Sememe: Set of semes constituting the meaning of a
lexeme (Bernard Pottier).
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Componential analysis: example

Table: Lexical field organized by the seme “to sit on”

chair armchair stool couch pouf
back + + - + -

elevated + + + + -
one person + + + - +

to sit on + + + + +
solid material + + + + -

with arms - + - + -
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Universal Semantics

Universal semantics and semantic primitives

Semantic primitives: They are semantic concepts that are innately understood,
but cannot be expressed in simpler terms. They represent words or phrases that
are learned through practice, but cannot be defined concretely

For example, although the meaning of ”touching” is readily understood, a
dictionary might define ”touch” as to make contact and ”contact” as touching.

Natural semantic metalanguage: Any English word can be described (defined)
with a text using a primitive lexicon of about 60 words (primitive concepts) in the
English natural semantic metalanguage.

For example: “lie” is defined as what a person does when he says something not
true because he wants someone to think it true

(Wierzbicka A. Semantics: Primes and Universals. 1996)
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Relational model of lexical meaning

Relational meaning of words
The lexical meaning of a word is the set of lexical
relations (synonymy, hypernymy, hyponymy,
meronymy...) it holds with other words.
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Relational model of meaning

WordNet
Developed by George Miller and his team at
Princeton University, as the implementation of a
mental model of the lexicon (ideas based on
psycholinguistics).
Organized around the notion of a synset: a set of
synonyms in a language that represent a single
concept (or word sense)
Semantic relations between concepts / syntsets
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Distributionalism

Distributional meaning

In 1957, the corpus linguist John R. Firth lays the
foundations for the modern distributional theory with the
following idea: “You shall know a word by the company it
keeps” (Firth, 1957).

Corpora and statistical methods to analyze the word
behavior in contexts (e.g. concordances, association
measures, etc) are parts and parcels of the lexicographer’s
toolbox (Lenci 2008).

Nowdays, This is the most popular semantic model in
Natural Language Processing: a lexical unit is defined as a
vector of contexts.
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Distributional meaning: example

< N subj run > < N subj eat > < red mod N >
car 3 0 7

horse 10 15 0
moto 6 0 5
cat 5 21 0

Table: Toy vectors for “car”, “horse”, “motorbike”, and “cat”
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Polysemy: meaning - senses

The meaning of a polysemous word consists of a set
of related senses.
For instance, “Portugal” is a polysemous word whose
meaning consists of, at least, three senses:

Place: “I’m in Portugal”
People: “Portugal is losing purchasing power”

People+Place: “I like Portugal”
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Distributional meaning

The distributional hypothesis (Zellig Harris and J.R. Firth)
The meaning of a word is the set of contexts in which it
occurs in texts.

Words with similar contexts have similar meanings.
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How do we grasp word meaning?

I found a cute, hairy wampimuk
sleeping behind the tree

(Example by McDonald & Ramscar 2001)
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Distributional hypothesis
Lenci (2008)

Weak assumption
A quantitative method for lexical similarity and semantic
analysis.

Strong assumptions
A cognitive/logical hypothesis about semantic
representations:

Mental objects linked to intensions of logical
expressions (Katrin Erk, 2013).
Ideal distributions linked to extensions of logical
expressions (Copestake and Herbelot, 2012).
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Vector space model

A co-occurrence matrix collected from large text corpora,
with distributional vectors representing words as rows,
and contextual elements of some kind as
columns/dimensions.

< N subj run > < N subj eat > < red mod N >
car 3 0 10

horse 7 15 0
moto 6 0 7
cat 12 9 0

Table: Toy vectors for “car”, “horse”, “motorbike”, and “cat”
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Dimensionality reduction
Corpus-based matrices have many dimensions and are
sparse. How to fix it?

Dense matrices:
Singular Value Decomposition: Latent Semantics
Analysis (Landauer, 1998)
Neural-based learning: Word Embeddings, word2vec
(Mikolov, 2013)

But contexts in dense matrices are not transparent. How
to solve it?

Explicit matrices filtering out non-relevant contexts.
Gamallo Pablo and Stefan Bordag (2011) “Is Singular Value Decomposition Useful for Word Similarity
Extraction?” Language Resources and Evaluation, 45(2).

Gamallo, Pablo (2016) “Comparing explicit and predictive distributional semantic models endowed with
syntactic contexts”, Language Resources and Evaluation.
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New trends
Contextualized Word Embeddings and Compositional Distributional Semantics

Contextualized Word Embeddings
Generated with Transformers and Masked Language Models: BERT, ELMo,
OpenAI GPT-2, ULMFit, ...

Deep Learning libraries: PyTorch (FaceBook), TensorFlow (Google), ...

Compositional Distributional Semantics
Gamallo, Pablo, Susana Sotelo, José Ramom Pichel, Mikel Artetxe (2019). “Contextualized Translations of
Phrasal Verbs with Distributional Compositional Semantics and Monolingual Corpora”, Computational
Linguistics

Gamallo, Pablo (2019). “A dependency-based approach to word contextualization using compositional
distributional semantics”, Journal of Language Modelling, 7(1), pp. 53-92.
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Applications
Word Similarity / Association

Thesaurus construction from monolingual corpus.
Lexical inference and analogies:
wood↔ carpenter / stone↔ X X = mason
Bilingual dictionaries from comporable corpora.
. . .
(Contextualized) word embeddings are being used in
almost all NLP applications.
Historical linguistics

CiTIUS Design and use of linguistic tools
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Thesaurus and Ontologies

Thesaurus
Terms (and their senses) organized by means of semantic
relations (main relation: synonymy)

Ontologies
Concepts organized by conceptual relations (main
relation: hyperonymy)
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Thesaurus and Relations

Synonymy bank→ depository financial institution

Hyperonymy {bank,...} → {institution,...}
Co-hyponymy {bank,...} → {foundation,...}
Meronymy {bank,...} → {banker,...}
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Automatic generation of thesaurus

Distributional Hypothesis: words sharing similar
contexts are semantically related
Types of contexts:

co-occurrences within a window of words (n-grams
and bag-of-words)
co-occurrences in lexico-syntactic contexts

Output: Words semantically related to other words
by unknown relations and similarity weights
(probabilistic lexicon)
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Steps to generate a thesaurus

Distributional matrix: Collect a co-occurrence
matrix from a corpus with distributional vectors
representing words as rows, and contextual words as
columns/dimensions
Transform the matrix: Re-weighting raw frequencies
by computing the degree of relevance of each context
given a word (PMI, Loglikehood,...)
Similarity: Compute the similarity score between
words based on their contexts (Cosine, Dice,
Jaccard,...)
Ranking: For each word, identify and select its most
similar words (ranking by similarity)
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Non-zero word-context matrix from corpus

Corpus: Some mammals eat meat and plants.
Tokenization:

Some mammals eat meat and plants .

Generate n-grams (trigrams):

some mammals eat
mammals eat meat
eat meat and
meat and plants
and plants .
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Non-zero word-context matrix from corpus

trigrams without stopwords:

STOP mammals eat
mammals eat meat
eat meat STOP
meat STOP plants
STOP plants STOP

“word context frequency” triples:
mammals eat 1
eat mammals 1
mammals meat 1
meat mammals 1
eat meat 1
meat eat 1
meat plants 1
plants meat 1
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Transforming the matrix by context weighting

The less frequent the context word is, the higher the
weight given to the word-context co-occurrence count
should be. For instance, co-occurrence with frequent
context word time is less informative than
co-occurrence with rarer motorbike.
Point-wise Mutual Information (PMI) widely used and
pretty robust.
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Transforming the matrix by context weighting

Point-wise Mutual Information (PMI):

PMI(meat ,eat) = log
prob(meat ,eat)

prob(meat)prob(eat)

mammals eat 0.69
eat mammals 0.69
mammals meat 0.28
meat mammals 0.28
eat meat 0.28
meat eat 0.28
meat plants 0.98
plants meat 0.98
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Transforming the matrix by context weighting:
matrix reduction

The size of a matrix can be reduced by selecting the most
relevant contexts of each word:

Rank contexts by relevance (PMI values)
Select the N most relevant (N=1).

mammals eat 0.69
eat mammals 0.69
meat plants 0.98
plants meat 0.98
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Word similarity

Two words are similar if they share many (relevant)
contexts
Different similarity measures can be used: Cosine,
Jaccard, Dice, etc.
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Word similarity

Dice coefficient:

dice(eat ,meat) =
2 ∗

∑
i min(pmi(eat , cntxi),pmi(meat , cntxi))

PMI(eat) + PMI(meat)
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Word similarity: a toy corpus

Pedro read books and Maria read books too,
Pedro read novels and Maria read novels and
books, Pedro and Maria read many things, but
Pedro loves Maria, Maria loves books, in fact
Maria loves many things.

Maria is eating an apple and Pedro is eating

an apple too, Pedro is eating eggs now, Pedro

and Maria are eating many things, Maria is

eating eggs, Maria and Pedro loves eggs a lot.
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Word similarity

Dice similarity between some word pairs of the toy
corpus:

books novels 0.547388
apple eggs 0.279988
Pedro Maria 0.095035
things books 0.438387
books apple 0.027512
Maria novels 0.000000
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Ranking by similarity

Dice similarity between novels and their N most
similar words:

novels books 0.547388
novels things 0.372190
novels apple 0.254601
novels reads 0.202930
novels eating 0.189784
novels eggs 0.072307
novels Maria 0.000000
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Functions of the tokenizer spaces.py

strip() returns a copy of the string in which all chars defined as argument have
been stripped from the beginning and the end of the string (default whitespace
characters). In the following example, all 0 are removed from the input:

str = "0000000this is string example....wow!!!0000000";
print str.strip( ’0’ )

re.sub(pattern, repl, string) replaces all occurrences of the pattern in string
with repl, substituting all occurrences. In the following example, all “-” symbols of
the phone number are replaced by whitespaces:

phone = "2004-959-559
num = re.sub(r"-", " ", phone)
print num
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Running tokenizer spaces.py

cat corpus.txt |./tokenizer_spaces.py
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Functions of tokenizer.py (one token per line)

split() returns a list of all the words in the string (splits on all whitespace if left
unspecified). The following example returns the list [’this’, ’is’, ’Bob’].

string = "this is Bob";
print string.split()

for iterating var in sequence: iterates over the items of any sequence, such as
a list.

str = "this is Bob";
str = str.split()
for token in str:

print token
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Functions of ngrams.py

Building bigrams: given a string of words, all possible bigrams are generated
from the string as follows:

str = "this is Bob";
output = []
for i in range(len(str)-2+1):

output.append(str[i:i+2])
print output

Defining a function of n-grams with def: given a string of words (str) and a
number of grams (n), a generic function (ngrams) is defined as follows:

def ngrams(str, n):
str = str.split()
output = []
for i in range(len(str)-n+1):

output.append(str[i:i+n])
return output
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Functions of ngrams.py

printing bigrams returned by the function ngrams: given two specific
arguments, namely the string “this is Bob” and number “2”, the list of bigrams
returned by the function is: [ [’this’, ’is’], [’is’, ’Bob’] ], which is stored in variable
result. Then the tokens of each bigram are grouped in variable juntar, which is
finally printed. This is done as follows:

result = ngrams("this is Bob",2)
for ngram in result:

juntar = ""

for token in ngram:
juntar += token + " "

print juntar
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Running ngrams.py (trigrams)

cat corpus.txt |./tokenizer_spaces.py |./ngrams.py 3
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Functions of stopwords.py

building a list from a file: given a file containing a word per line, we stored all
words in a list as follows:

file = open(file_name, ’rU’)
for token in file:

token = token.strip()
stop.append(token)

checking if an element is in a list: given word w1 and the list of words stop, if
that word is in the list, then we print “YES”:

if w1 in stop:
print "YES"
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Running stopwords.py

cat corpus.txt |./tokenizer_spaces.py
|./ngrams.py 3
|./stopwords.py resources/stopwords-en.txt
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Functions of trigrams2matrix.py
building a dictionary of words with their frequency: given a list of words,
each word and its frequency in the list is stored in a dictionary (dico), which can
be used to print the frequency of each word. This is an example that returns the
frequency of “apple” (=2)

from collections import defaultdict

words = "apple banana apple strawberry banana lemon"

dico = defaultdict(int)
for word in words.split():

dico[word] += 1
if dico["apple"]:

print dico["apple"]

printing elements of a dictionary: given dictionary dico, their attributes and
values are printed as follow:

for w in dico:
print ’%s\t%.3f’ % (w, dico[w])
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Running trigrams2matrix.py

cat corpus.txt |./tokenizer_spaces.py
|./ngrams.py 3
|./stopwords.py resources/stopwords-en.txt
|./trigrams2matrix.py
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Functions of filterning words cntx.py

sorting a dictionary by keys:
mydict = {’carl’:40,

’alan’:2,
’bob’:1,
’danny’:3}

for key in sorted(mydict):
print "%s: %s" % (key, mydict[key])

sorting a dictionary by values and reverse order:
mydict = {’carl’:40,

’alan’:2,
’bob’:1,
’danny’:3}

for key in sorted(mydict, key=mydict.get, reverse=True):
print "%s: %s" % (key, mydict[key])
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Functions of filterning words cntx.py

building a dictionary containing another dictionary: given a list of triples
(name, property, value), we can create a dictionary of names whose values is
another dictionary of properties having specific values for the pair
name-property. This is an example that returns the value assigned to “Bob” for
the property “age” (=60)

from collections import defaultdict

data = "Bob_age_60 Mary_age_80 Bob_weight_80 Mary_weight_70"

dico = defaultdict(dict)
for triples in data.split():

(name, prop, value) = triples.split(’_’)
dico[name][prop] = value

if dico["Bob"]["age"]:
print dico["name"]["age"]
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Functions of filterning words cntx.py

sorting a dictionary of dictionaries by values and reverse order:
from collections import defaultdict

data = "Bob_age_60 Mary_age_80 Bob_weight_80 Mary_weight_70"

dico = defaultdict(dict)
for triples in data.split():

(name, prop, value) = triples.split(’_’)
dico[name][prop] = float(value)

for name, properties in sorted(dico.items() ):
for prop in sorted(properties,key=properties.get,reverse=True):

print ’%s\t%s\t%.d’ % (word, prop, dico[word][prop])
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Running filtering words cntx.py

cat corpus.txt |./tokenizer_spaces.py
|./ngrams.py 3
|./stopwords.py resources/stopwords-en.txt
|./trigrams2matrix.py
| ./filtering_words_cntx.py 1 3 > matrix.txt
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Algorithm of dice.py

Read the filtered matrix and build two dictionaries:
WordContext[word][context] = weight
Word[word] = all weights

Read each word pair w1, w2:
For each context c of w1 in WordContext dictionary:

If c is also shared by w2:
Select the minimum weight between
WordContext[w1][c] and WordContext[w2][c] and
add that minimum value to variable Common.

Compute the dice similarity for w1 and w2 as follows:
Common divided by Word[w1] and Word[w2]

Print the dice value for w1 and w2
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Running dice.py and other scripts

##select all pairs with word "novels":
cat matrix.txt |./pairs_selection.py novels > pairs_novels.txt

##compute dice similarity:
cat matrix.txt |./dice.py pairs_novels.txt |./ranking_simil.py 5

##look up contexts shared by "novels" and "books":
cat matrix.txt |./compara.py books novels
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