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Abstract

This article provides a preliminary semantic framework for Dependency Grammar
in which lexical words are semantically defined as contextual distributions (sets of con-
texts) while syntactic dependencies are compositional operations on word distributions.
More precisely, any syntactic dependency uses the contextual distribution of the de-
pendent word to restrict the distribution of the head, and makes use of the contextual
distribution of the head to restrict that of the dependent word. The interpretation of
composite expressions and sentences, which are analyzed as a tree of binary depen-
dencies, is performed by restricting the contexts of words dependency by dependency
in a left-to-right incremental way. Consequently, the meaning of the whole composite
expression or sentence is not a single representation, but a list of contextualized senses,
namely the restricted distributions of its constituent (lexical) words. We report the
results of two large-scale corpus-based experiments on two different natural language
processing applications: paraphrasing and compositional translation.
Keywords Distributional Similarity, Compositional Semantics, Syntactic Analysis,
Dependencies

1 Introduction

The main proposal of this paper is to put syntactic dependencies at the core of seman-
tic composition. We propose a semantic space in which each syntactic dependency is
associated with two binary operations: a head operation which builds the sense of the
head word by considering the semantic restrictions (or selectional preferences) of the
dependent one, and a dependent operation which results in a new sense of the depen-
dent word by taking into account the selectional preferences of the head. Consider for
instance the expression “drive a tunnel” in which the two words are related by the di-
rect object dependency. In that context, the head function makes use of the selectional
preferences of the noun to select for the digging sense of the polysemous verb “drive”.
By contrast, in “read a passage”, it is the dependent function that uses the preferences



a b c

rm rn

a1 b1 c

rm : hm(b,a
m), dm(b

m,a)

a1 b2 c1

rn : hn(b1,c
n), dn(b

n
1 ,c)

Figure 1: Syntactic analysis of the expression “a b c” and left-to-right construction of the
word senses

of the verb to activate one of the senses of the polysemous noun “passage”, namely a
segment of a written work or speech, instead of a path or channel or the act of moving.
It follows that a syntactic dependency between two words carries two complementary
selective functions, each one imposing its own selectional preferences. These two func-
tions allow the two related words to mutually disambiguate or discriminate the sense
of each other by co-selection (or co-discrimination).

Besides semantic composition by co-selection, we also define semantic interpretation
as an incremental process. Interpretation is built up from left to right as each syntactic
dependency is processed, following their combinatorial properties. For instance, to
interpret “the bulldozer drove a passage”, we identify two syntactic dependencies,
subject and direct object, and define two sequential composition processes. First, the
subject dependency uses the (inverse) selectional preferences of “bulldozer” to select
the digging sense of the verb “drive”. And then, the direct object relation makes use of
the preferences required by “drive” (already disambiguated) to select the path/channel
sense of the noun “passage”.

Figure 1 illustrates the compositional and incremental process of building the sense
of words by co-selection and left-to-right. Given the composite expression “a b c”
and its dependency analysis depicted in the first row of the figure, two compositional
processes are driven by the two dependencies (rm and rn) involved in the analysis. First,
rm is decomposed into two functions: hm and dm. The head function hm takes the
sense of the head word b and the selectional preferences of a, noted here as am, as input,
and returns a new denotation of the head word: b1. Similarly, the dependent function
dm takes as input the sense of the dependent word a and the selectional preferences bm,
and returns a new denotation of the dependent word: a1. Next, the relation rn between
words b and c is also decomposed into the head and dependent functions: hn and dn.
Function hn combines the contextualized head b1 with the selectional preferences cn,
and returns a more specific sense of the head: b2. Finally, function dn takes as input
the sense of the dependent word c and the selectional preferences bn1 , and builds a new
contextualized sense of the dependent word: c1. The subscript specifies the number
of times a word has been combined with another. At the end of the process, we have
not obtained one single sense for the whole expression “a b c”, but one contextualized
sense per word: a1, b2 and c1. Notice that b2 is the sense of the root and, then, it can
be seen as the sense of the composite expression.

In our approach, words and their selectional preferences denote distributional rep-
resentations, whereas syntactic dependencies are compositional operations on them. In



Erk (2013), distributional representations stand for mental objects which are linked to
intensions of logical expressions. Similarly, in Copestake and Herbelot (2012), distribu-
tions are also used as intensions, but they are linked to extensions, namely to the ideal
distribution of a word, which consists of all the contexts in which a word could occur.
We follow the Copestake and Heberlot’s suggestion and so define word denotations
as sets of contexts. Selectional preferences will also be defined as context sets, and
semantic composition driven by syntactic dependencies will be just set intersections
between context sets.

Dependencies have been traditionally considered as syntactic objects. They are
at the centre of dependency-based grammars: e.g. the Tesnière’s Dependency Gram-
mar (Tesniére, 1959), the Mel’c̆uk’s Meaning-Text Theory (Kahane, 2003), or Word
Grammar (Hudson, 2003). However, the meaning of dependencies has not been clearly
defined yet. In our approach, we situate dependencies in the semantic space where they
denote compositional operations. The main contribution of this article is to provide
a semantic description of syntactic dependencies by taking into account compositional
distributional semantics and incremental interpretation in a corpus-based approach.

This article is organized as follows. In the next section (2), we describe our com-
positional semantic model where lexical words denote entities defined in distributional
terms as sets of contexts, while dependencies are binary functions on those entities.
Special attention will be paid to a particular application: compositional translation
based on non-parallel corpora. Next, in Section 3 we define the incremental approach
to interpretation. We analyze some examples from our corpus-based application for
compositional and incremental translation. Then, Section 4 describes two large-scale
corpus-based experiments: paraphrasing and compositional translation. In Section
5, we introduce related work on compositional distributional approaches as well as
on theories based on incremental interpretation. And finally, relevant conclusions are
reported in Section 6.

2 The Semantic Space

We propose a simple semantic space with just two semantic types: entities and binary
relations Entities are denotations of lexical units and binary relations are denotations
of syntactic dependencies (nominal subject, direct object, noun modification, preposi-
tional object, . . . ). Dependencies combine entities to construct more specific entities
in a compositional way.

Notice that we use the term entity to refer to basic objects, such as events or
individuals, with no internal structure and which can not be defined in terms of other,
more basic entities (Davidson, 1969).

The semantics of determiners and verb specifiers are beyond the scope of the article.
Therefore, grounding operations and quantification are not considered in our universe
of interpretation.

The two semantic types, entities and dependencies, are defined in the following
subsections.



2.1 Entities

Lexical units (i.e., content words) denote entities, which we define as set of contexts in
a distributional model. Distributional contexts of words are semantic representations
that can stand for intensions or mental concepts in the semantic space (Erk, 2013), and
may represent word extensions when they are taken as ideal distributions (i.e. all the
contexts in which a word could occur with respect to some microworld) (Copestake and
Herbelot, 2012). As we can obtain a simple correspondence between ideal distributions
and a first-order notion of extension, we may apply basic algebraic operations on them
giving rise to a set-theoretic model. For example, contexts where “horse” is the subject
of “run” will be a subset of all the contexts where “horse” occurs in the subject position,
which in turn will be a subset of all the contexts in which “horse” occurs. We identify
a context with the position of a word in a specific syntactic dependency: for instance
< N nsubj run > is a context of “horse”, and < horse nsubj V > is a context of
“run”. It means that the nominal subject of “run” is a context of “horse”, while a
context of the verb “run” is the noun “horse” in the subject position. The set of
(ideal) contexts of “run” represents the entity run, while horse is the set of contexts
of “horse”. Hereafter, denotations are noted in italics (horse and run are entities) and
linguistic units with quotation marks (“horse” is a noun and “run” is a verb).

2.1.1 Word Senses and Selectional Preferences

Given a word, we distinguish two types of context sets that can be associated with
it: the meaning of a word (or its sense if the word has been contextualized), and the
selectional preferences (or lexical restrictions) the word imposes on another one within
a syntactic dependency.

The meaning of a word is the set of potential contexts in which such word could be
used. Difference in meaning correlates with difference in distribution (Harris, 1954).
This idea was somehow inspired from the first linguists, such as Antoine Meillet Meillet
(1921), who associated word meaning with word use at the begining of the 20th century.

The selectional preferences imposed by a word in a dependency are the contexts of
all words that co-occur with it in that dependency. Word meanings are combined with
selectional preferences to yield contextualized senses.

For instance, take again the words “run” and “horse” and their combination by
means of the dependency nsubj (e.g. “a horse is running”). On the one hand, the
entity run (the set of contexts in which “run” occurs) is combined with the preferences
imposed by “horse” in that syntactic position, and noted horsensubj . In this situation,
the entity horsensubj represents the contexts of all verbs (“eat”, “jump”, . . . ) that may
have “horse” as subject (except “run”). Both sets, run and horsensubj , are compatible
and can be intersected since all are contexts of verbs. Their intersection is a not empty
set that represents the sense of “run” in composite expressions such as “a horse is
running”:

run ∩ horsensubj = run1

It means that the contexts of the verbs the noun “horse” is the subject of (“eat”,
“jump”, etc) are used to restrict the set of contexts of “run”. This restriction enables
selecting only those contexts of “run” that activate one specific sense of the verb: the



one referring to a physical movement. In other words, the combination of run with
horsensubj gives rise to a more specific running event, run1, which is a subset of run.

On the other hand, the entity horse is combined with the preferences imposed by
“run” as head of the nsubj relation. These preferences, noted runnsubj , represent the
contexts of all nouns (“dog”, “car”, “computer”, . . . ) that may be in the subject posi-
tion of the verb “run” (except “horse”). Both sets, horse and runnsubj , are compatible
since all are contexts of nouns. Their intersection represents the contextualized sense
of “horse” in expressions like “a horse is running”:

horse ∩ runnsubj = horse1

It results in a more elaborate denotation of the noun, horse1, which is a subset of
horse. Both, run1 and horse1, are contextualized senses of the generic meanings run
and horse. Word meanings, word senses, and selectional preferences are the entities of
our semantic space.

In a similar way, the contextualized senses of “coach” and “electric” in the composite
“electric coach” are built by means of the following intersections:

coach ∩ electricnmod = coach1

electric ∩ coachnmod = electric1

Notice that the meaning of “coach”, out of context, includes two opposite senses:
bus and trainer. The selectional preferences imposed by the adjective as nominal mod-
ifier, electricnmod, are the contexts of those nouns that can be modified by “electric”
(e.g. “car”, “device”, etc). They are combined with the contexts of the noun “coach”
to build the new entity, coach1, which is the subset of coach mostly referring to the
bus sense, leaving most contexts related to the trainer sense out of the new entity.1.
On the other hand, coachnmod are the preferences imposed by the noun “coach”. They
represent the contexts of the adjectives that may modify the noun, and are used to
select a contextualized sense of the adjective: electric1.

Our definitions of selectional preferences and word sense are related to the Corpus
Pattern Analysis (CPA) described in Hanks (2013) and Jezek and Hanks (2010). The
authors state that the selectional preferences cannot be reduced to discret categories
such as Humans, Food, Artifact, Activity, etc. Lexical coertions are usually involved
in word combinations and thus unexpected arguments are the rule and not the ex-
ception. In CPA, the ontology of lexical categories is a statistically based structure
of collocational preferences, called “shimmering lexical sets”. Each canonical member
of a lexical set is recorded with statistical contextual information. Besides, in Jezek
and Hanks (2010), it is assumed a mutual semantic conditioning between heads and
dependents.

These ideas on selectional preferences and word sense are also close to the discrim-
inating model (Schütze, 1998), which does not make use of predefined and labeled
senses from external resources such as WordNet (Fellbaum, 1998). Word sense dis-
crimination is based on unsupervised techniques which discriminate word senses by
clustering similar words, i.e. by identifying words with similar context distribution.
The distributional senses (i.e. word clusters) discoverd by these techniques may not
be equivalent to the traditional senses in a dictionary sense inventory. Indeed, they

1Note that the new entity coach1 also should contain contexts related to the trainer sense, which might
be activated if the nominal expression is inserted in a larger linguistic context that clearly refers to that
sense: “I bought an electric coach to train in my flat”



may not be related to discrete categories in a traditional ontology. For this reason, the
evaluation of word sense discrimination is a difficult task (Navigli, 2009). By contrast,
supervised strategies for word sense disambiguation rely on text previously annotated
with pre-defined sense labels (e.g. WordNet identifiers), and their objective is to learn
classifiers to assign those sense labels to word instances.

Our approach uses an unsupervised strategy to discriminate senses. It is actually
a compositional approach to word sense discrimination. However, to simplify, in this
article the terms disambiguation and discrimination are used in the same way: to refer
to those cases in which the selectional preferences tend to activate one of the senses of
a polysemous word.

Word sense discrimination/disambiguation is a different task from word specifica-
tion or word restriction, which means that the selectional preferences just specify the
unambiguous meaning of a word or a previously discriminated sense. For instance,
in “electric coach”, co-selection performs both sense discrimination and sense speci-
fication. On the one hand, the adjective “coach” discriminates one of the senses of
“coach” by activating the bus sense, and on the other hand, the noun “coach” just
specifies the unambiguous meaning of the adjective. As we do not provide any formal
definition of sense, the difference between discrimination and specification is estab-
lished in an intuitive way. Their formal definition is beyond the scope of the article.
When the difference between discrimination and specification is not relevant for our
claims, we use the generic terms selection or contextualization. Similarly, co-selection
may refer to different cases of contextualization: co-discrimination (“drive a passage”),
co-specification (“electric engine”), or discrimination+specification (“electric coach”).

There has been some criticism against the intersective method in compositional
semantics. The intersection can fail if denotations of nouns, adjectives, and intransitive
verbs are defined as predicates (from sets of individuals to true/false values) (Partee,
2007). For instance, the meaning of “former president” is not a president any more, or
the meaning of “fake gun” is not actually a gun. However, in the model we propose,
fakenmod is a very large entity (the contexts of all nouns that are actually modified by
“fake”) which should share many contexts/properties (e.g. shape, colour, etc) with gun
(the contexts of noun “gun”). Thus, in a semantic model based on context distribution,
a fake gun is actually a kind of gun and, thereby, the context intersection between
fakenmod and gun should not be empty.

2.1.2 Subtypes of Entities

We consider that lexical words belonging to different syntactic categories (e.g. “horse”,
“run”, “electric”) have their own types of contexts, which are defined in different and
incompatible distributional spaces. Contexts of nouns differ from contexts of verbs
which, in turn, are different from contexts of adjectives and adverbs. According to these
differences, we distinguish three subtypes of entities: individuals, which are defined in
the space of nominal contexts; processes, defined as verbal contexts; and qualities
consisting of contexts of adjectives and adverbs. Therefore, the entities denoted by
nouns like “horse” or “John”, as well as the root head of expressions like “horse running
in the park” or “the man who is running in the park” are all individuals. Similarly,
the entities denoted by verbs like “run” or “eat” as well as the root head of expressions
such as “eat meat”, “is eating meat”, “John is eating”, or “John is eating meat”,



are all processes. Qualities are the entities denoted by “electric” or “slowly” and the
head of “very good”, “difficult to do”, and so on. The upper-level ontology of entity
subtypes we have introduced is close to the main kinds defined in Aristotle’s Categories
(Studtmann, 2014).

This is in accordance with the semantic categories proposed by Cognitive Grammar
(Langacker, 1991). This theory distinguishes three basic semantic types according to
the modes of organizing denotations: things are denoted by nouns and nominals, pro-
cesses are denoted by verbs and clauses, and finally atemporal relations are associated
with adjectives and adverbs2. These three basic categories are defined according to
their different ways of organizing denotations. A study on denotations according to
their various modes of grammatical organization is beyond the scope of the paper. For
more details, see (Gamallo, 2003).

2.2 Dependency-Based Compositional Functions

In the semantic space, a dependency is associated with two binary functions: both the
head and the dependent functions. The head function takes as input the meaning/sense
of the head and the selectional preferences associated with the dependent word, and it
results in a more restricted/contextualized sense of the head. The dependent function
takes as input the meaning/sense of the dependent word and the selectional preferences
imposed by the head, and it yields a contextualized sense of the dependent.

Let us consider a syntactic dependency, nsubj (nominal subject), which denotes
two compositional functions in the semantic space represented by the following binary
λ-expressions:

λyλxnsubjh(x, y) (1)

λxλy nsubjd(x, y) (2)

where x and y are variables for entities: x stands for the denotation of the head while
y represents the denotation of the dependent. The semantic type of any compositional
function (derived from a binary dependency) is < e,< e, e >>, where e is the atomic
type for entities. The first argument of a compositional function is the entity used
to contextualize the sense of the second argument. If we apply the head function
represented by the λ-expression in (1) to the individual horse, and the dependency
function represented in 2 to the process run, we obtain the following unary functions:

λx nsubjh(x, horsensubj) (3)

λy nsubjd(runnsubj , y) (4)

where horsensubj is the result of unifying the contexts of all those verbs related with
“horse” via the subject dependency, while runnsubj is the result of unifying the contexts
of all those nouns related with “run” at the subject position, more formally:

2Besides adjectives and adverbs, prepositions also denote atemporal relations in Cognitive Grammar.
However, in our model prepositions will introduce syntactic dependencies.



horsensubj =
⋃

P∈Horse

P (5)

runnsubj =
⋃

I∈Run

I (6)

In Equation 5, P represents a process (or set of contexts denoted by a verb) and
Horse stands for a very specific set of sets, namely the set of entities denoted by
verbs co-occurring with “horse” in the subject position. In equation 6, I represents
an individual (or set of contexts denoted by a noun) and Run stands for the set of
entities denoted by nouns co-occurring with “run” at the subject position.

In more intuitive terms, the unary head function represented in 3 stands for the
inverse selectional preferences that the noun “horse” imposes on any verb in the subject
position, while the dependent function in 4 can be seen as the selectional preferences
imposed by the verb “run” on its nominal subject. Both functions are of type < e, e >.
They take an entity as argument and return a more elaborate entity. In the case of 3, it
takes a process and returns a process restricted by the nominal subject. For 4, it takes
an individual and returns an individual specified by the verb. If these two functions
are applied to run and horse, respectively, we obtain:

nsubjh(run, horsensubj) = run ∩ horsensubj = run1 (7)

nsubjd(runnsubj , horse) = horse ∩ runnsubj = horse1 (8)

In each combination, we make the intersection of two sets of contexts.3 The final
set resulting from the head function, run1 (see Equation 7 above), represents a con-
textualized process, which is the denotation of the head verb in composite expressions
such as “a horse is running”, “horses ran”, etc. This contextualized process is a subset
of that denoted by “run”: run1 ⊆ run. The set resulting from the dependent function
(Equation 8) represents a contextualized individual, which is a subset of the entity
denoted by “horse”: horse1 ⊆ horse.

Notice that, in approaches to computational semantics inspired by Combinatory
Categorial Grammar (Steedman, 1996) and Montagovian semantics (Montague, 1970),
the interpretation process for composite expressions such as “horses are running” or
“electric coach” relies on rigid function-argument structures. Relational expressions
like verbs and adjectives are used as predicates while nouns and nominals are their
arguments. In the composition process, each word is supposed to play a rigid and fixed
role: the relational word is semantically represented as a selective function imposing
constraints on the denotations of the words it combines with, while non-relational
words are in turn seen as arguments filling the constraints imposed by the function.
For instance, “run” and “red” would denote functions while “horses” and “car” would
be their arguments. By contrast, we do not define verbs and adjectives (or adverbs) as
functional artifacts driving the compositional process. In our compositional approach,
dependencies are the active functions that control and rule the selectional requirements
imposed by the two related words. Dependencies, instead of relational words, are then

3Before intersecting both sets, horsensubj must be updated by removing the contexts that were only
provided by “run”, while the contexts only provided by “horse” should also be removed from runnsubj .



conceived of as the main functional operations taking part in composition. In fact,
our unary predicates can be seen as semantic structures very similar to the functions
denoted by adjectives or intransitive verbs in the standard compositional approaches.
For instance, λx nmodh(x, rednsubj) is a function from entities to entities, (< e, e >),
more precisely from individuals to individuals, as the traditional denotation of adjec-
tive “red”. However, in our model this function is not directly associated with the
adjective but to the lexico-syntactic pattern in which the adjective is assigned the
role of dependent (within the nmod syntactic dependency). In addition, we consider
that the same dependency, nmod, also enables a from qualities to qualities function,
such as λy nmodh(carnsubj , y), which refers to the preferences imposed by “car” to the
adjectives that may modify it.

This way, two syntactically dependent expressions are no longer interpreted as a
rigid “predicate-argument” structure, where the predicate is the active function impos-
ing the semantic preferences on a passive argument, which matches such preferences.
On the contrary, each constituent word imposes its selectional preferences on the other
one within a dependency-based construction. This is in accordance with non-standard
linguistic research which assumes that the words involved in a composite expression
impose semantic restrictions on each other (Pustejovsky, 1995; Gamallo, 2008; Gamallo
et al., 2005). Not only verbs or adjectives are taken as predicates selecting different
types of nouns, but also nouns select for different types of verbs and adjectives.

The combination of a verbal process with a nominal entity via a syntactic depen-
dency actually represents the assignment operation of an argument to a particular
semantic/thematic role of the (content of the) verb.

2.3 A Case Study: Translating Polysemous Words

Most practical applications and test cases of compositional distributional semantics
have turned around phrase and sentence paraphrasing (Mitchell and Lapata, 2008,
2010). However little attention has been paid to compositional translation of poly-
semous words. For instance, the verb “run” can be translated into Spanish by very
different verbs on the basis of the contextual words it is combined. It can be translated
by “correr” in “the horse is running”, by “circular” (to travel) in “the bus runs along
the highway”, by “ejecutar” (to execute) in “the computer runs a program”, or even
by “dirigir” (to manage) in “the manager runs the company”. Polysemy is probably
the main source of problems for machine translation systems.

To perform compositional translation, we implemented a corpus-based strategy to
build distributional representations of words. Given that we cannot work with ideal
distributions, the distributional representation of a word is a vector computed from
the occurrences of that word in a given corpus (Grefenstette, 1995). In distributional
semantics computational models, each word is defined as a context vector, and each
position in the vector represents a specific context of the word whose value is the fre-
quency (or some statistical weight) of the word in that context. We are moving from a
formal semantics approach relying on set-theoretic algebra into a corpus-based strategy
based on linear algebra. Set unions are implemented as component-wise vector addi-
tion and set intersections as component-wise vector multiplication. The translation of
a word is the result of selecting the nearest neighbor in a compositional bilingual vector
space. More precisely, bilingual vectors are derived from both a bilingual dictionary



used to define word contexts and non-parallel corpora used to obtain bilingual word
co-occurrences with those contexts. Consequently, to build bilingual word vectors, first
we employ the traditional approach to extract translation equivalents from non-parallel
texts (Fung and Yee, 1998; Rapp, 1999; Gamallo, 2007; Gamallo and Pichel, 2008) and
then, bilingual vectors are combined using the compositional model we have defined
above in the current paper’s section. The vectors were built by making use of a non-
parallel corpus that consists of an English part containing the first 200M words from
ukWaC corpus (Baroni et al., 2009). The Spanish part was derived from a 2014 dump
file of the Spanish Wikipedia4: about 480M word tokens. Not only the English and
Spanish parts are not translations of each other, but also they are not comparable.
Finally, compositional translation of a given compound expression in the source lan-
guage (English) is performed by searching its nearest neighbor vector (similarity score),
among a set of candidates in the target language (Spanish).

Table 1 shows a small arbitrarily selected sample of English expressions containing
polysemous words and their translations into Spanish using our compositional strategy
(second column) and Google Translator (third column). For our strategy, first the
input expressions are analyzed with the dependency-based parser DepPattern (Gamallo
and González, 2011), an then we apply compositional translation. Yet, our approach
presents some limitations to be considered: only lexical words are translated and no
inflection is performed. In addition, translation is made from lemmas to lemmas: we
just translate lemmas of the source language by lemmas of the target one. However,
differences in word order between the two languages are taken into account. Asterisk
(*) is used to mark wrong translated words.

The input expressions in Table 1 are constituted by at least one ambiguous English
word (“run”, “coach”, “drive”, “hire”) which are translated by different words into
Spanish according to the context. For instance, the verb “drive” is translated by
“excavar” (to dig) in the context of “tunnel”, and by “conducir” (to lead/guide) in
the context of “coach”. Notice that in this last example, there is co-discrimination of
senses, since “coach” is also polysemous and is disambiguated in the context of “drive”:
it is translated by “autobús” (bus) instead of by “entrenador” (trainer). Another
example with sense co-discrimination of two polysemous words is “hire a coach”.

Notice that Google Translate tends to fail when one of the two following situations
happens: i) the composite expression consists of two polysemous words; ii) the compos-
ite expression is not frequent and might not been found in the parallel corpus used for
training. Google Translate is a statistical machine translation (SMT) engine (Koehn,
2009). SMT systems constantly learn translations by pattern matching. As more con-
tent is analyzed from a parallel corpus, the engine learns more patterns, phrases or
co-occurrences. Therefore, when the input phrase is not frequent and contains at least
one ambiguous word, the system may fail. Our model, by contrast, does not rely on
a parallel corpus but on any multilingual source of text corpora (e.g. the entire Web
is a huge non-parallel multilingual corpus). In addition, it is able to predict the sense
of a word in context even if the input composite expression has never occurred in the
non-parallel corpus.

Yet, a critical problem of our strategy is efficiency and scalability. Our system takes
about one minute in translating a single expression with just one dependency and takes
polynomial time as the input size grows. A Big Data environment taking advantage of

4http://dumps.wikimedia.org/eswiktionary



English expres-
sion

Compositional
translation

Google Translate

the horse is run-
ning

caballo correr el caballo se está ejecu-
tando*

the car is running coche circular el coche está funcionando*
run a company dirigir empresa dirigir una empresa
run the marathon correr maratón correr el maratón
run in the park correr en parque correr en el parque
run a program ejecutar pro-

grama
ejecutar un programa

drive a tunnel excavar túnel conducir* túnel
drive a coach conducir autobús conducir un coche*
electric coach autobús eléctrico entrenador* eléctrica
hire a coach contratar entre-

nador
contratar a un entrenador

hire a house alquiler casa contratar* a una casa

Table 1: Samples of translations from English into Spanish of expressions containing poly-
semous words (“run”, “coach”, “drive”, “hire”)

multi-core processors and distributed computing will be required to (at least partially)
solve these two problems.

3 Dependencies and Incremental Interpretation

One of the basic assumptions on semantic interpretation made in frameworks such
as Dynamic Logic (Groenendijk and Stokhof, 1991), Discourse Representation Theory
(Kamp and Reyle, 1993), and Situation Semantics (Barwise, 1987), is that the meaning
of a sentence is dependent of the meaning of the previous sentence in the discourse,
and modifies itself the meaning of the following sentence. Sentence meaning does not
exist out of discursive unfolding. Meaning is incrementally constructed at the same
time as discourse information is processed.

We assume that incrementality is true not only at the inter-sentence level but also
at the inter-word level, i.e., between dependent words. In order for a sentence-level
interpretation to be attained, dependencies must be established between individual
constituents as soon as possible. This claim is assumed by a great variety of re-
search (Kempson et al., 2001, 1997; Milward, 1992; Costa et al., 2001; Schlesewsky and
Bornkessel, 2004). The incremental hypothesis states that information is built up on a
left-to-right word-by-word basis in the interpretation process (Kempson et al., 2001).
The meaning of an utterance is progressively built up as the words come in. The
sense of a word is provided as part of the context for processing each subsequent word.
Incremental processing assumes that humans interpret language without reaching the
end of the input sentence, that is, they are able to assign a sense to the initial left
fragment of an utterance. This hypothesis has received a large experimental support
in the psycholinguistic community over the years (McRae et al., 1997; Tanenhaus and
Carlson, 1989; Truswell et al., 1994).



the computer runs word2vec

nsubj dobj

computer1 run1 word2vec

nsubjh(run, computernsubj), nsubjd(run
nsubj, computer)

computer1 run2 word2vec1

dobjh(run1, word2vecdobj), dobjd(run
dobj
1 , word2vec)

Figure 2: Syntactic analysis of the expression “the computer runs word2vec” and left-to-right
construction of the word senses

For instance, to interpret “the computer runs a program”, it is required to interpret
“the computer runs” as a fragment that restricts the type of nouns that can appear
at the direct object position: “program”, “script”, “software”, etc. In the same way
“the manager runs” restricts the entities that a manager is used to run: “companies”,
“firms”, etc. However, a left-to-right interpretation process cannot be easily assumed
by a standard compositional approach. In a Montagovian approach, any transitive
verb (or verb used as transitive) denotes a binary function, λyλx run(x, y), which is
first applied to the noun at the direct object position in order to build an intransitive
verb, for instance λx run(x, program) (“run the program”). Then, this function is
applied to the noun at the subject position to build a proposition (e.g. “the computer
runs the program”). The standard compositional model does not provide any semantic
interpretation for the subject+verb expression of a transitive construction: for instance
“the computer runs” within the sentence “the computer runs the program”. Hence, it
is unable to simulate how the expression “the computer runs...” restricts the type of
nouns appearing at the direct object position of the verb.

By contrast, in our incremental compositional strategy, “the computer runs” within
a sentence like “the computer runs word2vec” is a grammatical expression referring to
two contextualized entities: the sense of “run” given “computer” as subject, and the
sense of “computer” as nominal subject of “run”. The contextualized sense of “run”
helps interpreting “runs word2vec” with the sense previously activated by “computer”:
i.e. running as operating a machine or a program. Even if we have no information
on the meaning of “word2vec”, the disambiguated sense of the verb leads us to inter-
pret that noun as a kind of software at the direct object position. Our incremental
model is based on the semantic interpretation of composite expressions dependency-by-
dependency from left-to-right. The incremental interpretation of “the computer runs
word2vec” is illustrated in 3.5

At the end of the left-to-right interpretation process, we obtain three contextualized
senses, one per lexical word. Consequently, we get not only the compositional entity
of the root word (here the verb “run”), but also the compositional entities associated

5We are considering neither determiners nor verb tense, whose semantic interpretation would consist in
grounding nouns and verbs to a specific situation and, then, to specific individuals and events.



with each constituent word. The contextualized sense of the root, run2, represents the
particular process the composite expression is referring to. The three verbal entities
(run, run1, and run2) can be perceived as different degrees of sense specification of
the running process denoted by the verb “run”: run2 ⊆ run1 ⊆ run. In terms of sense
discrimination, run1 discriminates one specific sense from those presupposed by the
generic meaning, run. By contrast, run2 does not discriminate any new sense with
regard to run1. Both entities are referring to the same kind of running process, but
run2 is just a more specific process than run1. The other two contextualized senses
built by the interpretation process are the individuals computer1 and word2vec1.

Finally, once we have reached the last word by incremental interpretation, it is still
possible to update the sense of the previous words by going backwards in the process
of function application. Sense updating is performed by applying again the functions
right-to-left to the first words, namely those appearing to the left of the root word.
This right-to-left updating process is performed by using the current sense and selec-
tional preferences of the root word. This way, the dependent function of nsubjd can
be applied again on computer1 by considering the selectional restrictions imposed by
the root run2. It returns computer2, whose sense represents a very specific individ-
ual: a computer running word2vec. Both computer2 and word2vec1 are contextualized
individuals that may be involved in further linguistic phenomena such as co-reference
linking. Consequently, they can be retrieved by anaphorical pronouns in further sen-
tences at the discourse level.

Our proposed model is then able to simulate the incremental semantic interpretation
dependency by dependency. The meaning of words is gradually elaborated as they are
syntactically integrated in new dependencies. Therefore, syntactic analysis and seman-
tic interpretation are merged into the same incremental process of information growth.
This incremental procedure also allows us to take into account the influence of word
order in the construction of meaning, in particular in those languages (e.g. Spanish
and Portuguese) where the word order is not so rigid as in English. Furthermore, this
syntactic-semantic parsing strategy is able to deal with the garden path sentence effect.
It occurs when the sentence has a phrase or word with an ambiguous meaning that
the reader interprets in a certain way, and when she/he reads the whole sentence there
is a difference in what has been read and what was expected. Both left-to-right and
right-to-left contextualization processes simulate the way a reader builds the meaning
of composite expressions and sentences.

3.1 A Case Study: Incremental Translation

As in the previous section, we find that machine translation might be an interesting
application for our model. Our method is able to simulate the process of translating de-
pendency by dependency from English into Spanish in a compositional way. We apply
now compositional translation to expressions consisting of a sequence of dependen-
cies. For instance, take the expression “the coach ran a team”. The process starts by
proposing translation candidates to the two words related by the subject dependency:
“the coach ran”. As the two related words, “coach” and “run”, are still ambiguous
within this dependency, we get several translation candidates with very close similarity
scores. These are the top five translation candidates for “the coach ran”:

• autobús circular (the bus travelled on the road)



English expression Incremental transla-
tion

Google Translate

the coach ran a team entrenador dirigir equipo el entrenador corrió* un equipo
the manager runs the com-
pany

director dirigir empresa el gerente dirige la empresa

the handsome coach is run-
ning a marathon

apuesto entrenador correr
maratón

el entrenador guapo corre el
maratón

the electric coach runs over
a cat

autobús eléctrico atropel-
lar gato

el entrenador* eléctrica corre*
sobre un gato

the electric coach is turning autobús eléctrico girar el sofá* eléctrico está convir-
tiendo*

the computer is running
word2vec

ordenador ejecutar
word2vec

el equipo está funcionando*
word2vec

the computer runs the pro-
gram

ordenador ejecutar pro-
grama

el equipo se* ejecuta el pro-
grama

a man hired an electric
coach

hombre alquilar autobús
eléctrico

un hombre contrató* a un en-
trenador* eléctrica

the company hired a man empresa contratar hombre la empresa contrató a un hom-
bre

the manager of the com-
pany fired an employee

gerente de empresa des-
pedir empleado

el gerente de la empresa despe-
dido un empleado

the terrorist fired an em-
ployee

terrorista disparar em-
pleado

el terrorista disparó un em-
pleado

Table 2: Samples of translations from English into Spanish of expressions containing two or
more dependencies.

• autobús funcionar (the bus was working)
• entrenador dirirgir (the trainer led something)
• autobús dirigir (the bus led something)
• entrenador correr (the trainer was running)

In the next dependency, the denotation of “ran” in the context of “coach” (and
noted run1) is combined with that of “team”. This results in a more contextualized
entity, run2, which is now clearly translated into Spanish by “dirigir” (to lead) in the
context of “team”. The new entity, run2, constraints in turn “coach” to be translated
by “entrenador” (trainer) instead of “autobús” (bus).

Table 2 shows some English expressions containing at least two syntactic depen-
dencies. They are translated using our incremental left-to-right strategy including
right-to-left updating. Results are compared to those obtained with Google Translate.
As already mentioned, this system faces difficulties translating composite expressions
with more than one polysemous word (in “the electric coach runs over a cat”, the noun
“coach” and the verb “run” are polysemous), or with infrequent words (as “word2vec”
in “the computer is running word2vec”).

4 Corpus-Based Experiments and Evaluation

As the few examples of our case study introduced in the previous sections are not
enough to evaluate the proposed method, we performed two larger scale experiments.
First, in subsection 4.1, we compare our strategy to build compositional vectors to that
defined in Baroni and Zamparelli (2010), the state-of-the-art in the field according to
the experiments reported in Dinu et al. (2013b). We used as gold standard the test



dataset described in Mitchell and Lapata (2008). Next, in subsection 4.2, we evaluate
our translation strategy against a gold standard we have elaborated.

4.1 Mitchell and Lapata Benchmark

In this experiment, we build a monolingual vector space and compute similarity be-
tween composite expressions. The English test dataset by Mitchell and Lapata (2008)
comprises a total of 3,600 human similarity judgments. Each item consists of an in-
transitive verb and a subject noun, which are compared to another NOUN VERB pair
(NV hereafter) combining the same noun with a synonym of the verb that is chosen
to be either similar or dissimilar to the verb in the context of the given subject. For
instance, “child stray” is related to “child roam”, being roam a synonym of stray.
The dataset was constructed by extracting NV composite expressions from the British
National Corpus (BNC) and verb synonyms from WordNet. To evaluate the results
of the tested systems, Spearman correlation is computed between individual human
similarity scores and the systems’ predictions.

As the objective of the experiment is to compute the similarity between pairs of NV
composite expressions, we are able to compare the similarity not only between the con-
textualized heads of two composite expressions, but also between their contextualized
dependent expressions. For instance, we compute the similarity between “eye flare” vs
“eye flame” by comparing first the verbs flare and flame when combined with eye in
the subject position (head function), and by comparing how (dis)similar is the noun
eye when combined with both the verbs flare and flame (dependent function). In ad-
dition, as we are provided with two compositional functions (head and dependent) for
each pair of compared expressions, it is possible to compute a new similarity measure
by averaging head and dependent : DEP (head+dep) strategy.

Table 3 shows the Spearman’s correlation values (ρ) obtained by our method DEP
and Baroni@Zamparelli (Baroni and Zamparelli, 2010). For the latter, we used the
software DISSECT (Dinu et al., 2013a)6. The ρ score reached by our DEP (head+dep)
strategy is 0.16, which is higher than using only head-based similarity (head in second
row) or dependency-based similarity (dep in third row). This shows that the similarity
obtained by combining the head and dependent functions is more accurate than that
obtained by using only one type of compositional function.

The three similarity strategies based on our algorithm, DEP, outperform the Ba-
roni@Zamparelli system (0.06). All the score values were obtained on the basis of our
relatively small English corpus (200M tokens). However, Dinu et al. (2013b) reported
ρ = 0.26 , which was obtained by the Baroni@Zamparelli system using a much larger
corpus of about 2.8 billion tokens. Besides, this large corpus contains the BNC, which
was used by Mitchell and Lapata to build the dataset.

It would be interesting to prepare or have access to test datasets mainly based on
frequent but ambiguous words (in any corpus), which would allow us to more easily
evaluate different systems on manageable corpora. This could prevent us from per-
forming evaluations where the best systems are those that were applied on the largest
corpora, even if those systems are not always provided with the best algorithm.

The difference between DEP and Baroni@Zamparelli is statistically highly signifi-
cant (Wilcoxon signed-rank test, p < 0.0001).

6http://clic.cimec.unitn.it/composes/toolkit/introduction.html



systems ρ

DEP (head+dep) 0.16
DEP (head) 0.10
DEP (dep) 0.13
Baroni@Zamparelli 0.06

Table 3: Spearman correlation for intransitive expressions using the benchmark by Mitchell
and Lapata (2008)

4.2 Translation of ADJ-NOUN Compounds

To evaluate our compositional strategy for translation in a bilingual vector space,
we built a test dataset with 607 ADJ NOUN (AN) English compounds associated
with their corresponding NA or AN Spanish translations. To create this dataset, we
identified all unambiguous nouns and adjectives from the dictionary, and selected the
AN constructions occurring at least 10 times in the corpus whose constituents belong
to the list of unambiguous adjectives and nouns. Then, we used the dictionary to
translate them into Spanish expressions and all translations were revised and manually
corrected.

Even if our dataset is constituted by AN English expressions that are all translated
by NA or AN Spanish compounds, this is not always the case for other composite
expressions. Several problems can arise when we translate a composite expression:
fertile translations in which the target compound has more words than the source term
(“cow milk” / leche de vaca); non-compositional expressions that can be translated by
just one word (“dry humor” / irońıa); intercategorial translations where, in some
contexts, nouns (e.g. “coast”) are translated by adjectives (costero). In fact, bilingual
dictionaries do not make intercategorial translations.

In order to deal with all these potential cases, the source compound will be compared
against a very large list of candidates including single words and compounds with
different morphological and syntactic properties. Thus, for each English compound
expression to be translated, the set of translation candidates contains the following
three types of Spanish candidates:
• The compounds built with an English-Spanish dictionary and the appropriate

translation templates. More precisely, it consists in decomposing the English
composite term into atomic components, translating these components into Span-
ish and recomposing the translated components into Spanish composite terms. If
the atomic English components are ambiguous, we obtain several Spanish candi-
dates. If they are not ambiguous (as in our dataset), only one Spanish candidate
is generated. This strategy is used in other compositional translation approaches
(Grefenstette, 1999; Tanaka and Baldwin, 2003; Delpech et al., 2012; Morin and
Daille, 2012).

• The top-100 multiwords derived from the 10 most similar Spanish nouns to the
English compound. This strategy is used to take into account fertile transla-
tions in which the target compound has more words than the source term, or for
intercategorial translations.



• The set of all Spanish single nouns. This is useful for non-compositional expres-
sions which can be translated by just one word.

In total, each English compound is assigned about 50M translation candidates and,
among all of them, only one candidate is correct.

We compared our strategy with one baseline: a corpus-based strategy in which
the translation of a compound expression is obtained by selecting the most frequent
compound candidate in a given corpus. This corpus-based strategy only considers those
translation candidates which are also compound expressions. Hence, single nouns are
not taken into account as candidate translations. This strategy actually follows the
basic method described in Grefenstette (1999). Table 4 shows the accuracy obtained by
our system and the baseline. Accuracy of our system, DEP, reaches 89%. If we consider
the two nearest neighbors (instead of just the nearest one), accuracy achieves 93%. The
corpus-based strategy fails because most of the candidates are well-formed expressions
that can be found in a corpus. For instance, consider that the Spanish composite leche
materna (“breast milk”) is part of the top-100 Spanish candidate translations derived
from “cow milk”. Given that leche materna is a well-formed and frequent expression,
it could be more frequent in the given corpus than leche de vaca (“cow milk”) and
thereby oddly taken as the equivalent translation of “cow milk”.

Notice that a basic dictionary-based strategy would reach 100% accuracy because,
in this artifitial dataset, all compounds are fully compositional and the constituent
words are not ambiguous (according to our dictionary): each English word has only
one Spanish translation. Therefore, for this dataset, contextualization is not required.
Our strategy, however, is based on contextualization and behaves as if all expressions
would contain ambiguous words. In a dataset with ambiguous words, our method
should keep similar accuracy while that of the basic dictionary-based strategy would
drop dramatically.

systems Accuracy

DEP 0.89
corpus-based 0.08

Table 4: Accuracy obtained by the two strategies to translate AN English expressions into
Spanish. The test dataset contains 607 AN expressions with unambiguous words.

A large scale translation test with composite expressions containing ambiguous
words should be performed. However, to the best of our knowledge, no test datasets
with English-Spanish composite expressions (ambiguous or not) are available.7

5 Related Work

Our model relies on two different approaches: compositional distributional semantics
and incremental (or dynamic) semantic interpretation.

7Our test dataset is freely available at http://fegalaz.usc.es/dataset-en-es.tgz



5.1 Compositional Distributional Semantics

Several models for compositionality in vector spaces have been proposed in recent years.
The most basic approach to composition, explored by Mitchel and Lapata (Mitchell
and Lapata, 2008, 2009, 2010), is to combine vectors of two syntactically related words
with arithmetic operations: addition and component-wise multiplication. The additive
model produces a sort of union of contexts, whereas multiplication has an intersective
effect. According to Mitchell and Lapata (2008), component-wise multiplication per-
forms better than the additive model. However, in Mitchell and Lapata (2009) and
Mitchell and Lapata (2010), these authors explore weighted additive models giving
more weight to some constituents in specific word combinations. For instance, in a
noun-subject-verb combination, the verb is provided with higher weight because the
whole construction is closer to the verb than to the noun. Other weighted additive
models are described in Guevara (2010) and Zanzotto et al. (2010).

All these models have in common the fact of defining composition operations for
just word pairs. Their main drawback is that they do not propose a more systematic
model accounting for all types of semantic composition. They do not focus on the
logical aspects of the functional approach underlying compositionality.

Other distributional approaches develop sound compositional models of meaning,
mostly based on Combinatory Categorial Grammar and typed functional application
inspired by Montagovian semantics (Baroni and Zamparelli, 2010; Coecke et al., 2010;
Grefenstette et al., 2011; Krishnamurthy and Mitchell, 2013; Baroni, 2013; Baroni
et al., 2014). The functional approaches relying on Categorial Grammar distinguish
the words denoting atomic types, which are represented as vectors, from those that
denote compound functions applying on vectors. By contrast, in our compositional
approach, function application is not driven by function words such as adjectives or
verbs, but by binary dependencies. Our semantic space does not map the syntactic
structure of Combinatory Categorial Grammar but that of Dependency Grammar.

Some of the approaches cited above induce the compositional meaning of the func-
tional words from examples adopting regression techniques commonly used in machine
learning (Baroni and Zamparelli, 2010; Krishnamurthy and Mitchell, 2013; Baroni,
2013; Baroni et al., 2014). In our approach, by contrast, functions associated with
dependencies are just basic arithmetic operations on vectors, as in the case of the
arithmetic approaches to composition described above (Mitchell and Lapata, 2008).
Arithmetic approaches are easy to implement and produce high-quality compositional
vectors, which makes them a good choice for practical applications (Baroni et al., 2014).

Other compositional approaches based on Categorial Grammar use tensor prod-
ucts for composition (Coecke et al., 2010; Grefenstette et al., 2011). Two problems
arise with tensor products. First, they result in an information scalability problem,
since tensor representations grow exponentially as the phrases grow longer (Turney,
2013). And second, tensor products did not perform as well as simple component-wise
multiplication in Mitchell and Lapata’s experiments (Mitchell and Lapata, 2010) .

So far, all the cited works are based on bag-of-words to represent vector contexts
and, then, word senses. However, there are a few works using vector spaces structured
with syntactic information as in our approach. Thater et al. (2010) distinguish between
first-order and second-order vectors in order to allow two syntactically incompatible
vectors to be combined. The notion of second-order vector is close to our concept



of selectional preferences. However, there are important differences between both ap-
proaches. In Thater et al. (2010), the combination of a first-order with a second-order
vector returns a second-order vector, which can be combined with other second-order
vectors. This could require the resort to third-order (or n-order) vectors at further
levels of vector composition. By contrast, in our approach, any vector combination
always returns a first-order vector. This simplifies the compositional process at any
level of analysis.

The work by Thater et al. (2010) is inspired by that described in Erk and Padó
(2008). Erk and Padó (2008) propose a method in which the combination of two
words, a and b, returns two vectors: a vector a’ representing the sense of a given
the selectional preferences imposed by b, and a vector b’ standing for the sense of b
given the (inverse) selectional preferences imposed by a. The main problem is that this
approach does not propose any compositional model. Its objective is to simulate word
sense disambiguation, but not to model semantic composition at any level of analysis.
Thater et al. (2010) took up the basic idea from Erk and Padó (2008) of exploiting
selectional preference information for contextualization and disambiguation. However,
they did not borrow the idea of splitting the output of a word combination into two
different vectors (one per word). As far as we know, no fully and coherent compositional
approach has been proposed from the interesting idea of returning two contextualized
vectors per combination. Our approach is an attempt to join the main ideas of these
syntax-based models (namely, selectional preferences as second-order vectors and two
returning senses per combination) into an entirely compositional model.

5.2 Incremental Interpretation in Dynamic Syntax

Dynamic Syntax was introduced in Kempson et al. (1997, 2001). In this approach, a
model of natural language understanding in which the development of an interpretation
of a string is defined as an incremental left-to-right process of constructing a logical
form representing one possible content attributable to the string. The denotation of an
expression is defined as its context change potential. More precisely, interpretation is
built up from left to right as each individual word is processed, following the combina-
torial properties of the words as specified by their logical type. Words are assumed to
project expressions in some logical language, and it is these that combine together to
result in a logical form corresponding to the interpretation of the sentence. In addition,
Dynamic Syntax relies on (partial) constitutive analysis.

The main differences between Dynamic Syntax and our interpretation strategy are
the following:

• Dynamic Syntax projects tree structures from words on the basis of their sub-
categorization properties. Words can have very complex function types. By
contrast, in our approach the interpretable structures are projected from syntactic
dependencies. Only dependencies are functional operations. Words just help
dependencies to build compositional structures.

• Interpretation in Dynamic Syntax is a goal-oriented procedure. It tries to reach a
final tree to be interpreted as a proposition. Meanwhile, interpretation relies on
partial constituent structures being part of that previously presupposed full tree.
By contrast, our approach is not goal-directed and, thereby, partial structures



are not required. Each dependency is interpretable without considering a full
tree driving the interpretation process.

• Dynamic Syntax is just a left-to-right process. By contrast, in our approach, we
also defined a short right-to-left scanning which updates the denotation of the
first words in the sequence by using the contextualized information of the root
word.

6 Conclusions

In this paper, syntactic dependencies were endowed with a combinatorial meaning.
The fact of characterizing dependencies as compositional devices has important conse-
quences on the way in which the process of semantic interpretation is considered. First,
dependencies denote binary functions on entities (defined as sets of contexts), while lex-
ical words denote entities. Second, the interpretation of a composite expression is not
a single representation, but the contextualized denotation of each constituent (lexical)
word. Third, the compositional process is performed in an incremental way depen-
dency by dependency from left-to-right. It starts with very ambiguous and generic
entities associated with the constituent words before composition, and results in less
ambiguous entities associated with the contextualized words. At the end of the process,
the words to the left of the root are updated using the contextualized sense of the root
in a right-to-left strategy.

And fourth, as syntactic dependencies are conceived here as semantic operations,
we situate syntax at the center of the semantic interpretation process. Syntax is not an
autonomous module which is independent of semantics. Rather, it is described as a par-
ticular semantic level (Langacker, 1991). In fact, there is evidence that disambiguating
a syntactic structure (e.g. pp-attachment) and enriching weak lexical specifications of
content (word sense disambiguation) are processes subject to the same psychological
constraints (Sperber and Wilson, 1995). Even if in our experiments the semantic in-
terpretation has been performed after the syntactic analysis in dependencies, we claim
that syntactic analysis and semantic interpretation should be merged into the same
incremental process of information growth.

Substantial problems still remain unsolved. For instance, there is no clear borderline
between compositional and non-compositional expressions (collocations, idioms, . . . ).
Let us suppose that we represent word senses as vectors derived from large corpora
(as in our experiments). It seems to be obvious that vectors of full compositional
compounds should be built by means of compositional operations and predictions based
on their constituent vectors. It is also evident that vectors of entirely frozen expressions
should be totally derived from corpus co-occurrences of the whole expressions without
considering internal constituency. However, there are many expressions, in particular
collocations (such as “save time”, “go mad”, “heavy rain”, . . . ) which can be considered
as both compositional and non-compositional. In those cases, it is not clear which
is the best method to build their distributional representation: predicted vectors by
compositionality or corpus-observed vectors of the whole expression?

Another problem that has not been considered is how to represent the semantics
of some grammatical words, namely determiners and auxiliary verbs (i.e., noun and
verb specifiers). For this purpose, we think a different functional approach would be



required, probably closer to the work described by Baroni, who defines functions as
linear transformations on vector spaces (Baroni et al., 2014).

In future work, we will address and go into detail about the idea of performing
incremental translation with dependency-by-dependency processing. On the basis of
this idea, we think that it could be possible to develop a new paradigm for machine
translation which would not be based on parallel corpora. For this purpose, it will be
necessary to better define how to generate translation candidates at whatever level of
composition.

Finally, in order to get more efficiency and scalability, it will be required to integrate
the system into a Big Data architecture with distributed databases and multi-core
processors.
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U. Reyle, and T. E. Zimmermann, eds., Presuppositions and Discourse. Elsevier,
Amsterdam.

Pustejovsky, James. 1995. The Generative Lexicon. Cambridge: MIT Press.
Rapp, Reinhard. 1999. Automatic Identification of Word Translations from Unrelated

English and German Corpora. In ACL’99 , pages 519–526.
Schlesewsky, M. and I. Bornkessel. 2004. On incremental interpretation: degrees of

meaning accessed during sentence comprehension. Lingua 114:1213–1234.
Schütze, Hinrich. 1998. Automatic Word Sense Discrimination. Computational Lin-

guistics 24(1):97–124.
Sperber, Dan and Deirdre Wilson. 1995. Relevance: Communication and cognition.

Oxford: Blackwell (Second Edition).
Steedman, Mark. 1996. Surface Structure and Interpretation. The MIT Press.
Studtmann, Paul. 2014. Aristotle’s categories. In E. N. Zalta, ed., The Stanford

Encyclopedia of Philosophy . Summer 2014 edn.
Tanaka, Takaaki and Timothy Baldwin. 2003. Noun-noun compound machine trans-

lation a feasibility study on shallow processing. In Proceedings of the ACL 2003
Workshop on Multiword Expressions: Analysis, Acquisition and Treatment , pages
17–24. Sapporo, Japan.

Tanenhaus, M.K. and G.N. Carlson. 1989. Lexical structure and language comprehen-
sion. In W. Marslen-Wilson, ed., Lexical Representation and Process, pages 530–561.
The MIT Press.
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