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Abstract

This article proposes a syntactic parsing strategy based on a depen-

dency grammar containing formal rules and a compression technique that

reduces the complexity of those rules. Compression parsing is mainly

driven by the ‘single-head’ constraint of Dependency Grammar, and can

be seen as an alternative method to the well-known constructive strategy.

The compression algorithm simplifies the input sentence by progressively

removing from it the dependent tokens as soon as binary syntactic depen-

dencies are recognized. This strategy is thus similar to that used in deter-

ministic dependency parsing. A compression parser was implemented and

released under General Public License, as well as a cross-lingual gram-

mar with Universal Dependencies, containing only broad-coverage rules

applied to Romance languages. The system is an almost delexicalized

parser which does not need training data to analyze Romance languages.

The rule-based cross-lingual parser was submitted to CoNLL 2017 Shared

Task: Multilingual Parsing from Raw Text to Universal Dependencies.

The performance of our system was compared to the other supervised

systems participating in the competition, paying special attention to the

parsing of different treebanks of the same language. We also trained a su-

pervised delexicalized parser for Romance languages in order to compare

it to our rule-based system. The results show that the performance of our

cross-lingual method does not change across related languages and across

different treebanks, while most supervised methods turn out to be very

dependent on the text domain used to train the system.
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1 Introduction

Syntactic analysis is a crucial module for many tasks relying on natural language
processing and information extraction techniques such as summarization (Abdi
et al., 2015), information retrieval (Vilares et al., 2014), topic detection (Lee
et al., 2007), named entity recognition and entity linking (Derczynskia et al.,
2015), text mining (Tseng et al., 2007), text classification (Uysal and Gunal,
2014; Sokolova and Lapalme, 2009), or sentiment analysis (Vilares et al., 2015;
Severyn et al., 2015). Besides, syntactic information is required to improve
semantic applications. More precisely, knowledge on syntactic parse trees turns
out to be useful to yield accurate semantic word models and embeddings based
on the distributional context of words (Saif et al., 2015), as well as to extract
semantic relations (Zhang et al., 2008) and for semantic role labeling (Zhou
et al., 2011).

In this article, we propose a new (rule-based) finite-state parsing strategy
based on dependencies, which minimizes the complexity of rules by using a
technique we call compression. Compression parsing is driven by the single-
head constraint of Dependency Grammar. It simplifies the input string by
progressively removing the dependent tokens as binary syntactic dependencies
are recognized. At the end of the compression process, if all the dependencies
in the sentence are recognized, the input string should contain just one token
representing the main head (i.e., the root) of the sentence. This strategy was
inspired by the Right and Left Reduce transitions used in deterministic depen-
dency parsing (Nivre, 2003; Nivre et al., 2004).

Deterministic dependency parsing (called ‘transition based’) relies on super-
vised techniques requiring fully analyzed training corpora (syntactic treebanks).
Given that supervised techniques tend to have a loss of precision when applied
to texts of domains and genres different from those used for training (Rimell
et al., 2009), they need too much manual effort to create, adapt, or modify the
training corpus to the target domain. It is generally accepted that supervised
classifiers require some type of domain adaptation when both the training and
test data sets belong to different domains. In particular, the accuracy of sta-
tistical parsers degrades when they are applied to different genres and domains
(Rimell et al., 2009; Gildea, 2001). By contrast, we propose a dependency pars-
ing strategy based on elementary linguistic information which may be applied
on different domains with similar accuracy and whose performance is close to
the state-of-the-art (Section 6.4).

A system based on the compression strategy was implemented in Perl and
released under General Public License: DepPattern. In addition, we defined a
high level grammar language to define dependency-based rules and developed a
grammar compiler in Ruby to generate compression parsers in several languages
(Gamallo and González, 2011). DepPattern has been used for several web-based
IE applications, namely Open Information Extraction from Wikipedia (Gamallo
et al., 2012), extraction of semantic relations with distant supervision (Garcia
and Gamallo, 2011), and extraction of bilingual terminologies from comparable
corpora (Gamallo and Pichel, 2008). It has also been integrated into commercial
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tools, e.g. Linguakit.1 and Avalingua2

Some experiments were performed to compare our rule-based system with
supervised approaches. For this purpose, we implemented a specific parser with
DepPattern, called MetaRomance, which is based on a very basic cross-lingual
grammar for Romance languages. MetaRomance was compared to the systems
that participated at CoNLL 2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies (Zeman et al., 2017). The reported results
showed that our system’s performance remains stable across related languages
and different treebanks for the same language, while most supervised methods
are very dependent on the specific properties of the treebank used for training
(Garcia and Gamallo, 2017).

The use of grammars in recent dependency parsers is almost non-existent
since they are considered too cost to build and maintain. However, this draw-
back can be minimized by incorporating into the parsing system light-weight
grammars. More precisely, our system makes use of small grammars containing
broad-coverage syntactic information that can be applied to several related lan-
guages and different content domains. The cost of manually creating grammar
rules is also reduced by providing a suitable rule notation for linguists.

The remainder of this article is organized as follows. Sections 2 and 3 intro-
duce different approaches on both dependency-based and finite-state parsing, in-
cluding deterministic dependency parsing and constructive parsing. Then, Sec-
tion 4 is focused on the description of our compression strategy. Next, Section 5
provides a general view of the implemented system: DepPattern and MetaRo-
mance. Section 6 reports the diverse experiments performed with MetaRomance
using the treebanks provided by CoNLL 2017. Finally, some conclusions are
drawn in Section 7.

2 Dependency-based Syntactic Parsing

Following Nivre (2006), there are two traditions in dependency parsing: grammar-
driven and data-driven parsing. Within each tradition, it is also possible to dis-
tinguish between two different approaches: non-deterministic and deterministic
parsing. In the latest years, most work on dependency parsing has been de-
veloped within the approach of data-driven deterministic parsing, which is also
known as transition-based parsing, in opposition to non-deterministic strategies
such as graph-based dependency parsing. In addition, in the latest years there
has been an important growth in cross-lingual parsing research, which is the
main application field of our parsing system.

2.1 Graph-based Dependency Parsing

A graph-based dependency parser, also known as discriminative parser, starts
with all valid dependencies between the nodes/words of a sentence. This am-

1https://linguakit.com/
2http://cilenis.com/en/avalingua/
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biguous structure is represented as a completely connected graph whose edges
are weighted according to a statistical model. Then, in the disambiguation
(or discriminative) process, the parser tries to find a tree covering all nodes
(words) in the graph that maximizes the sum of the weighted edges (McDon-
ald and Pereira, 2006; Carreras, 2007; Martins et al., 2010). Therefore, as in
non-deterministic parsing, this technique generates first all analyses and, then,
selects the most probable one according to the statistical model.

2.2 Transition-based Dependency Parsing

This strategy consists in inducing statistical models in combination with a de-
terministic strategy based on shift-reduce parsing (Nivre, 2004; Yamada and
Matsumoto, 2003; Gómez-Rodŕıguez and Fernández-González, 2012). Nivre
et al. (2004) uses the arc-eager algorithm as the parsing strategy. This al-
gorithm is simplified by just using two transitions on undirected dependencies
by Gómez-Rodŕıguez et al. (2015), by just using two transitions on undirected
dependencies (the head-dependent information is erased), so as to avoid error
propagation.

There have been recently many extensions of these two data-driven strate-
gies. In Zhang and Clark (2009), the authors propose a transition parsing pro-
cess combined with a beam-search decoder instead of greedy search. The use of
beam search allows the correction of local decision errors by global comparison.

In general, transition-based systems are more efficient (linear time in the
best cases), but graph-based parsers tend to be more accurate in terms of per-
formance. In this sense, the best dependency parser at the CoNLL 2017 shared
task was a graph-based parser (Dozat et al., 2017).

As we will show later, the main problem of these supervised learning strate-
gies arises when the test sentences belong to linguistic domains very different
from those found in the training corpus. We will show later the negative effect
on system performance when the test and training data sets does not belong to
the same domain and genre. As hand labeling data in new domains is a costly
enterprise, the domain adaptation problem is a fundamental challenge in ma-
chine learning applications. Note that many NLP annotated resources are based
on text from the news domain (in most cases, the Wall Street Journal), which is
a poor match to other domains such as biomedical texts, electronic mails, tran-
scription of meetings, administrative language, etc. (Daumé III, 2006, 2007).

2.3 Cross-Lingual Parsing

In the last few years the work on cross-lingual parsing (analyzing a target lan-
guages using resources from one or more source languages) has increased. In
this regard, we can define two main cross-lingual parsing approaches: (i) data
transfer, and (ii) model transfer. On the one hand, data transfer approaches
obtain annotated treebanks of the target variety by projecting the syntactic
information from the source data. Some methods use parallel corpora (Hwa
et al., 2005; Ganchev et al., 2009; Agić et al., 2016) while others directly create
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an artificial treebank taking advantage of machine translation (Tiedemann and
Agić, 2016).

On the other hand, model transfer approaches train supervised system (us-
ing the source data) that can be used to parse a target language (Zeman and
Resnik, 2008). The emergence of different initiatives promoting harmonized an-
notations increased the research in this area, testing different strategies such as
delexicalization and multi-source training (McDonald et al., 2011; Täckström
et al., 2012).

Besides, some recent works addressed multilingual parsing using a single
model, trained in a combination of various treebanks, to analyze different lan-
guages (Vilares et al., 2016; Ammar et al., 2016).

The growth in cross-lingual parsing research has given rise to a recent shared
task at VarDial 2017 (Zampieri et al., 2017), Cross-lingual Dependency Parsing
(CLP) (Tiedemann, 2017). CLP is a shared task focused on parsing selected
target languages without annotated training data, but having treebanks in one
or two closely related languages Rosa et al. (2017).

With the emergence of Universal Dependecies as the practical standard for
multilingual PoS and syntactic dependency annotation, it is possible to develop
universal rule-based strategies requiring no training data, and relying on basic
rules exploiting the UD criteria. The Universal Dependency Parser, described in
Mart́ınez Alonso et al. (2017), is a good example of this unsupervised strategy.
Similarly, our work performs cross-lingual parsing without training data, but
with two differences: the fisrt cross-lingual grammar we have written is focused
on Romance languages, and the parser relies on basic rules implemented as
cascades of finite-state transducers (FST).

3 Finite-State Parsing Techniques

Finite-state technology has attractive properties for syntactic parsing, such as
conceptual simplicity, flexibility, and efficiency in terms of space and time. It
permits to build robust and deterministic parsers. Most finite-state based pars-
ing strategies use cascades of transducers and are known as constructive parsers.

3.1 Constructive Parsing

Parsing based on cascades of finite-state transducers can be viewed as a sort of
string transformation. Finite-state transducers introduce progressively mark-
ings and labels within the input text. Transducers are arranged in cascades (or
layers), where the subsequent transducer takes the output of the previous one as
input. After a certain number of cascades, the initial input (which is a tagged
sentence) is transformed into a structured text enriched with syntactic marks,
such as chunk boundaries, labels for heads, special markers for functions or for
relations between heads, etc. This strategy, known as constructive, progressively
constructs the linguistic representation within the input string, by making use
of rules/transducers organized at different levels (or layers) of complexity.

5



Most of finite state strategies aim to construct phrase based structures in-
stead of dependency graphs (Ait-Mokhtar et al., 2002; Ciravegna and Lavelli,
2002; Kokkinakis and Kokkinakis, 1999; Ait-Mokhtar and Chanod, 1997; Ab-
ney, 1996; Joshi, 1996; Grefenstette, 1996). In general, the construction of these
structures is performed with three main cascades/layer of rules: chunking, head
recognition, and attachment. The first layers of rules transform the tagged input
into sequences of symbols representing basic chunks. Then, further rules take
those chunks as input to add new symbols marking the heads of each chunk and,
finally, new rules are applied on the output of the previous ones to annotate the
identified heads with labels of syntactic functions (attachment).

The number of finite-state approaches focused on constructive dependency
parsing is much more limited. We can merely cite the work by Oflazer (2003),
where the input string is progressively enriched by additional symbols encoding
dependency relations between words.

Finally, there is also work on finite-state parsing which is not properly based
on the constructive approach. For instance, the paper by Koskenniemi et al.
(1992) describes a finite-state strategy for eliminative parsing, inspired by Con-
straint Grammar. Sekine (2000) described a data-driven dependency parser
(evaluated on Japanese) with a deterministic finite-state transducer. It is much
faster than other data-driven parsers using similar machine learning techniques
for training, but its accuracy is lower.

3.2 Basic Properties

The finite-state strategy often relies on four fundamental properties: easy-first
parsing, procedural linguistic knowledge, robust parsing, and speed.

Easy-first parsing means that the simplest tasks must be done first, leaving
the harder decisions for the last steps of the parsing process. Parsing proceeds
by growing islands of certainty (Abney, 1996). Once the easy tasks have been
solved with high accuracy, then we can try to solve more difficult issues (e.g.,
long distance attachments). Notice that this principle does not harmonize well
with the incremental (left-to-right) strategy. Whereas incrementality simulates
how we process sentences, easy-first simulates how we solve problems.

Easy-first parsing is the main cause of the following property: procedural lin-
guistic knowledge. To solve problems, it is necessary to take good decisions, and
these decisions are taken, not by the parsing algorithm, but by the linguist’s in-
tuitions when writing the rules. According to Ait-Mokhtar and Chanod (1997),
the ordering of transducers is in itself a genuine linguistic task. The linguist de-
cides on the order of the transducers by addressing the easy tasks first. It means
that the linguistic knowledge is not totally declarative: the linguistic informa-
tion contains elements that are relevant for the parsing process. This may sound
like a severe disadvantage of the approach, but Ait-Mokhtar and Chanod (1997)
argue that this view of parsing is instrumental in achieving robust parsing in a
principled fashion.

A common problem with traditional parsers is that correct low level decisions
are rejected because full analysis cannot be performed, due to incompleteness of
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the grammar (Abney, 1996). However, for finite-state methods (and in general
for deterministic parsing), the issue of grammaticality is independent from the
parsing process. They assume that any text sentence is a valid input string.
The objective is to perform robust parsing. A robust parser produces output as
soon as it recognizes a piece of linguistic information within a substring of the
input sentence.

Parsers based on finite-state technology are the fastest systems among those
achieving linear time complexity. So, they are scalable as the input text increases
in size and are easily integrated into IE applications exploring the Web as corpus.

Finite-state transducers not only give simple and efficient parsing strategies
but also provide a natural and unified way of performing syntactic analysis.
Some authors claim that finite-state models are one of the best formalisms to
represent accurately complex linguistic phenomena (Roche, 1997, 1999). It is,
therefore, assumed that the development of FST-based parsing strategies goes
far beyond regular grammars. There has been a stream of work in using finite-
state methods in parsing which is based on approximating context-free gram-
mars with finite-state grammars, which are then processed by efficient methods
(Roche, 1997; Laporte, 1996; Pereira and Wright, 1997; Grimley-Evans, 1997;
Johnson, 1998; Nederhof, 2000). Moreover, according to Yli-Jyrä (2005), some
FST-based parsing strategies are closely related to some mildly context-sensitive
grammars, which may deal with the complexity of crossing dependencies and
non-projectivity.

4 A Compression Parsing Strategy

We propose yet another FST based method, very similar to the constructive
approaches, but making use of a similar strategy to the shift-reduce algorithm
as incremental parsing. We call it compression parsing. It consists of a set of
transducers/rules that compress the input sequence of tokens by progressively
removing the dependent tokens as soon as dependencies are recognized. So, at
each application of a rule, the systems reduce the input and make it easier to find
new dependencies in further rule applications. In particular, short dependencies
are recognized first and, as a consequence, the input is simplified so as to make
lighter the recognition of long distance dependencies. This is inspired by the
easy-first strategy.

4.1 Introduction to the Compression Method

The input of our parsing method is a sequence of disambiguated tagged tokens,
where each token is associated with two pieces of information: a PoS tag repre-
senting the basic morpho-syntactic category of the token (NOUN, VERB, ADP,
etc.)3 and a feature structure containing other relevant information of the token:
morphological information (number, tense, person, etc.), lemma, token string,
token position, etc. Tagged tokens are the elementary objects of the parsing

3http://universaldependencies.org/u/pos/all.html
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Table 1: Parsing with compression transducers of the sentence “The coach needs
a long break”

L4 V<t:needs,p:3>
T4 (3, 6)

L3 V<t:needs,p:3> N<t:break,p:6>
T3 (3, 2)

L2 N<t:coach,p:2> V<t:needs,p:3> N<t:break,p:6>
T2 (2, 1), (6, 4)

L1 DT<t:The,p:1> N<t:coach,p:2> V<t:needs,p:3> DT<t:a,p:4> N<t:break,p:6>
T1 (6, 5)

L0 DT<t:The,p:1> N<t:coach,p:2> V<t:needs,p:3> DT<t:a,p:4> A<t:long,p:5> N<t:break,p:6>

process, while rules, which are implemented as finite state transducers, operate
on tagged tokens. More precisely, rules successively identify dependencies be-
tween tokens, remove the dependents (if required) from the input sequence, and
update (if required) the feature structures of the heads. Let’s take the sentence
“The coach needs a long break” analyzed in Table 1 with the following set of
compression dependency rules:

T1: N<$f>← A<$f> N<$f>

T2: N<$f>← DT<$f> N<$f>

T3: V<$f>← N<$f> V<$f>

T4: V<$f>← V<$f> N<$f> (1)

Rules in (1) are regular expressions performing pattern matching and reduc-
tion (by replacing a string with an empty string). The right-hand side of a rule
is a pattern aimed at recognizing two adjacent dependent tokens. If there is a
sequence of tokens in the input sentence matching the right-hand side of the
current rule, the sequence is reduced to a single node (the head), whose PoS tag
is given in the left-hand side of the rule. Each element of a pattern is a token
represented by a PoS tag (V, N, A, DT)4 and a feature structure specifying
further linguistic information: token string, lemma, position, gender, number,
etc. Symbol <$f> stands for a generic feature structure. Rules will be described
in more detail later in Section 4.2.

Each rule is implemented as a transducer that recognizes ‘head-dependent’
token relations and removes the dependent tokens from the input string. It
is applied from left to right until it reaches the end of the input sentence.
The successive application of these transducers/rules simplifies and reduces the
search space of the next rule to be applied. The transducer/rule Ti is run with
Li−1 as input, and it produces Li as output. In Table 1, parsing begins at
level L0, which represents the tagged sentence. Each token in the sentence
consists of a PoS tag and a specific feature structure (within ‘< >’). For the
sake of simplicity, only two features are shown: both the token and its position

4V is a verb, N a noun, A an adjective, and DT a determiner.
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T4: needs break

T3: coach needs break

T2: The coach needs a break

T1: The coach needs a long break

Figure 1: The four levels of analysis of the sentence “The coach needs a long
break”

in the sentence. Lemmatization and morphological information (number, tense,
person, etc.) are missing here. The binary dependencies that are recognized are
stored as pairs: (position-of-head, position-of-dependent).

The application of T1 on the initial input sentence L0 recognizes a specific
adjective-noun dependency (the head is the token in position 6, and the de-
pendent in 5), and yields a reduced sentence L1 by removing the recognized
adjective. The last level (L4), which has been reached after applying the four
rules, represents the main head (or root) of the sentence. Figure 1 helps to
visualize the application of the four rules in the parsing process.

4.2 Description of rules

A compression rule is defined as a tuple < P,Arc,△, Reduce >, where:

• P is a pattern of tagged tokens, defined as a regular expression, whose
general form is αXβY γ. X and Y are non-empty strings representing two
tagged tokens, considered as the core elements of the pattern; while α, β,
and γ represent the left, middle, and right contexts, respectively, of the
core elements; they may be empty.

• Arc is the action that creates a dependency link between the core elements
(X and Y ), when a subsequence of the tagged input is matched by the
pattern; two types of arcs are distinguished: Left Arc adds a dependency
link between X and Y , X being the dependent and Y the head; Right Arc

creates a dependency link between X and Y , X being the head and Y the
dependent. This action also assigns a label (subject, modifier, adjunct,
etc) to the dependency.

• △ is a set of operations (Agreement, Add, Correction, Inherit, etc.) that
are applied on the feature structure of the core elements; they can be
used to perform very different actions: verifying if the two core elements
(i.e., head-dependent) share a set of feature-values, adding new feature-
values to the head, modifying some values of the head, correcting PoS
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tags, allowing the head to inherit selected values from the dependent, etc.
Add and Inherit can be seen as constructive operations.

• Reduce is the action that removes the dependent from the input string;
this action can be suspended if the dependent token is likely to be the
head in other dependencies that have not been recognized yet. So, the
dependent will not be reduced until all its potential dependent tokens
have been recognized.

For illustrative purposes, let us suppose we want to define a rule that iden-
tifies a dependency between two verbs, namely an auxiliary verb and a past
participle form, to be applied on the following sequence of tagged tokens:

VERB<token:has,lemma:have|type:A|tense:P|mode:I|number:S|person:3|pos:0>

ADV<token:never|lemma:never|pos:1>

VERB<token:seen|lemma:see|type:M|tense:P|mode:P|number:0|person:0|pos:2>

This is the tagged sequence for “has never seen”. Each line stands for a
token, constituted by a PoS tag and a feature structure. A feature structure
consists of a set of ‘attribute:value’ elements separated by vertical bars ‘|’ . The
information contained in the feature structure was mainly specified by a PoS
tagger, even if previously applied rules can also add or modify some features.
The rule that identifies the dependency between the auxiliary verb and the past
participle form could be constituted by the following elements:

- The pattern:

(X,Y)=(VERB<${f}type:A${f}>) (?:ADV<$f>)? (VERB<${f}mode:P${f}>)

where each tagged token is enclosed by round brackets and then grouped
into a single element. The two core elements (the two verbs) are stored
into the variables X and Y . The element starting with ‘?:’ introduces a
contextual token, the adverb, which is not stored in any variable since it
will not be involved in further operations triggered by the rule. Moreover,
well-known wildcard characters elaborate the pattern. In this example, the
question mark introduces an optional element, the adverb. Morphological
information, relevant for the matching process, appears between the sym-
bol ‘${f}’, which is used to represent a generic chain of ‘attribute:value’
pairs. The first verb is of type ‘A(uxiliary)’ and the last one has the mode
‘P(articiple)’.

- Left Arc(spec,X, Y ): this operation creates a labeled ‘dependent-head’
arc between the two core elements. In this case, the dependent is the left
element, X, while the head is Y , and the label spec. Note that we make
the assumption that the auxiliary verb is the dependent taking the lexical
verb as the head. This choice is relevant for IE applications working with
dependencies between lexical items.
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- Some operations belonging to the set △. In this example, we can apply
the following two specific operations:

• Inherit(tense,mode, number, person): The head inherits the values
from a set of morphological attributes of the dependent. This opera-
tion is required if a further rule needs to check the agreement between
this verb and any candidate to be its grammatical subject.

• Add(perfect : P ): This adds a new ‘attribute:value’ to the feature
structure of the head, namely the P(resent) perfect tense. This in-
formation was not provided by the PoS tag since it only gives tense
information on simple forms. Such an information can be relevant
later for rules involved in temporal relations.

- Reduce: this operation removes the dependent token from the input se-
quence. It is implemented as a replacement operation (by replacing a
token with an empty string):

ADV<$f>? VERB<$f>← VERB<$f> ADV<$f>? VERB<$f>

The right-hand side of the operation contains all the tagged tokens of
the pattern (both core and contextual elements), while the left-hand side
rewrites the same elements except that identified as being the dependent.

This rule rewrites the input expression to produce the following output:

ADV<token:never|lemma:never|pos:1>

VERB<token:seen|lemma:see|type:M|tense:P|mode:I|number:S|person:3|perfect:P|pos:2>

where the auxiliary verb has been removed, but not its main morphological
features, which have been inherited by the lexical head. In addition, new infor-
mation has been created within the feature structure of the head: the compound
tense present perfect. This is the input of the next rules.

Compressing rules not only reduce the complexity of the search space (or
input) of the remaining rules to be applied, but also construct relevant infor-
mation (by adding linguistic features) for the application of those rules. In
particular, a rule may store in the head relevant information of the removed
dependent (Inherit operation), generates new attributes or modify values from
existing attributes (Add operation), and also corrects odd tagged PoS tags (Cor-
rection, Garcia and Gamallo (2010)). In sum, the main contribution of our work
is to define compressing rules as the integration of two parsing techniques: both
transition-based and constructive parsing. On the one hand, the rules reduce
the search space by removing the dependent tokens and, on the other hand, they
can add relevant information to the head tokens by making use of operations
such as Add or Inherit. Rules compress the input sequence of tokens so as to
make it easier the identification of more distant dependencies.
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The Inherit operation is required to avoid information loss because of the
reduction operation. It permits to transfer linguistic features to heads before
removing the dependent tokens from the search space. This can be considered
as one of the main contributions of our dependency-based strategy. In combi-
nation with Add, Inherit is able to transfer relevant information from auxiliary,
light, or modal verbs to their main verbs. It can also be used to model coordi-
nation by transferring categorial information from coordinated structures to the
coordinating conjunction, which enables subject-verb agreements. For instance,
in the sentence “Paul and Mary are eating”, the Inherit operation allows the
coordinating conjunction “and” to inherit the nominal category of their parts
and, by means of the Add operation, it can get the plural number. In addition,
Inherit can also be used to transfer relevant morphological information (third
person, plural, present tense) to the root verb “eat” from the auxiliary “are”.
This way, the verb ‘(are) eating’ (3rd person and plural) agrees with its subject
“Paul and Mary”. A similar solution has also been described by Holan and
Zabokrtsky (2006).

4.3 Rule Ordering: Easy First

As was mentioned above (Section 3.2), the ordering of rules in a FST parser
is a genuine linguistic task. Rules are ordered in such a way that the easiest
tasks, for instance short dependencies, are performed first. As in Eisner and
Smith (2010), Goldberg and Elhadad (2010), Tratz and Hovy (2011), or Versley
(2014), we assume that correct parsers exhibit a short-dependency preference:
a word’s dependents tend to be close to it in the string. The fact of identifying
first easy syntactic structures, such as those including modifiers and specifiers,
allows us to easily find later distant links, for instance those relating verbs with
subordinate conjunctions. Let us take the expression: “if the former president
of USA says. . . ”. We can find here a long-distance dependency between the
verb ‘says’ and the conditional conjunction “if”. In most sentences, both words
are not adjacent since a great variety of tokens can be interposed. However,
in a compression approach, we can guess that dependency by making use of a
very simple pattern consisting in a subordinate conjunction (type:S) appearing
immediately to the left of a verb (last rule T6 below in 2). We just need the
following sequence of transductions/rules:5

T1: ADP<$f>← ADP<$f> N<$f>

T2: N<$f>← ADJ<$f> N<$f>

T3: N<$f>← DT<$f> N<$f>

T4: N<$f>← N<$f> ADP<$f>

T5: VERB<$f>← N<$f> VERB<$f>

T6: VERB<$f>← CONJ<${f}type:S${f}> VERB<$f> (2)

5To simplify, rule notation is focused on just the final Reduce operation.
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T6: if says

T5: if president says

T4: if president of says

T3: if the president of says

T2: if the former president of says

T1: if the former president of USA says

Figure 2: The six levels of analysis of “if the former president of USA says. . . ”

In Figure 2, we show the application of the six rules on the input expression,
as well as the effect of the Reduce transition at each level.

Each rule processes the input from left to right repeatedly as long as new
dependencies satisfying the pattern are found. Rules are checked top-down
following the rank imposed by the linguist. When the parser reaches the last
rule of the ranked list, if at least one dependency has been identified, the parser
starts again from the beginning until no new dependency is found. So, the parser
works iteratively until no change is made. If the grammar is not complete, the
parser produces partial parses.

Our approach takes into account the ideas on rule ordering by Arnola (1998).
According to him, ambiguous natural language sentences can be parsed deter-
ministically in linear time if the linguistic rules are ordered following two very
basic principles: short-distance rules must be applied in first place, but in the
case of ambiguous constructions, the most specific option must be applied first.

4.4 Shift-Reduce Parsing

Our rules are inspired by D-rules, which consist in describing possible depen-
dency relations between word categories (PoS tags) (Covington, 2001). Nivre
(2003) defined a shift-reduce parsing which uses oriented D-rules to represent
left and right dependencies. It applies a set of actions bottom-up in a left to
right and deterministic manner on consecutive pairs of words (A,B) (A<B) in
a sentence. Our compressed parsing strategy was inspired by this type of de-
terministic parsing. The basic actions (also called transitions) in deterministic
dependency parsing are the following (Nivre, 2003; Yamada and Matsumoto,
2003):

Shift adds no relation between A and B and moves to the right, by making
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(B,C) the new target words, where (B<C) .

Right-Reduce constructs a dependency relation between B (the head) and A
(the dependent), and A is thus eliminated for further considerations.

Left-Reduce constructs a dependency relation between A (the head) and B
(the dependent), and B is thus eliminated for further considerations.

This is known as the “arc-standard algorithm”. It is important to note
that, as in our compressed approach, the dependent word is removed from the
search space after performing Left and Right Reduce. The dependent is removed
because its head was already found, given the single-head condition. However,
this algorithm cannot be fully incremental (or left-to-right), since in some cases,
the Right-Reduce operation has to be performed from right to left, namely when
B is dependent of A but the head of C in the chain A<B<C. Incrementality
requires each word to have found all its dependents before it is combined with
its head. For instance, let’s take the partial analysis (3) of the sentence ’I saw
a man with moustache’:

I saw a man with moustache (3)

The noun “man” is the right-dependent of “saw” and the head of “with” (to its
right). If we apply the Right Reduce action on the arc linking “saw” and “ man”,
the noun would be removed before finding its right-dependent “with”. In order
to deal with multiple right-dependents and keep incrementality, it was necessary
to improve the algorithm by changing Right-Reduce. In (Nivre, 2004), a new
fully incremental algorithm was proposed: arc-eager dependency parsing. In this
new approach, left dependents are processed bottom-up using the incremental
left-to-right strategy with Left-Reduce, but right dependents are processed top-
down. More precisely, Right-Reduce is transformed into two separate transitions:
Right-Arc (a dependency is added without reduction) and Reduce, which is
performed when all right dependents of a dependent word are found.

Similarly, in the compressed parsing we propose, the Reduce operation is not
included in the actions that construct dependency arcs: Left Arc and Right Arc.
If it is required, the grammarian can postpone such an operation for several rea-
sons. We distinguish, at least, two reasons for suspending Reduce operation: the
treatment of embedded structures and the introduction of syntactic ambiguity.

4.5 Embedded Structures

An embedded structure arises when the head of the relation A→ B depends on
the dependent token of the same kind of relation A → B (see Figure 4). This
is the well-known recursive structure, which appears with completives, gerund
clauses, and so on. For instance, in “I saw a cat eating fish”, there is a verb
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(A=eating) which is the head of its nominal argument (B=fish), but it also
depends on the nominal argument (B=cat) depending, in turn, of the main
verb (A=saw):

A B A B

saw cat eating fish

(4)

In order to deal with embedded structures, it is possible to use several strate-
gies, involving or not the suspension of Reduce. A strategy with immediate
reduction forces the duplication of verb-argument rules at different linguistic
levels, namely at the level of main clauses and at the level of completive/gerund
clauses. However, the temporal suspension of this operation seems to be the
most efficient strategy, since it prevents from duplicating rules. So, we propose
to postpone the reduction of the dependent verb until its dependent argument
(or arguments) has been identified and removed. The strategy we propose is
the following:

T ′
1: A* B

T2: B← B A

T1: A← A B

(5)

In (5), the first occurrence of T1 (noted T ′
1) is an incomplete rule missing the

Reduce operation. It is constituted by a pattern with the two core elements, A
and B, as well as by the Right Arc operation which identifies a head, A (“saw”
and “eating”), and its dependent B (“cat” and “fish”). We use the asterisk to
highlight the head. In this partial application of the rule, the reduction of B
(“cat” and “fish”) is postponed. The removing operation will be performed only
after the identification and removal of the A element (“eating”) that depends
on B (“cat”) in rule T2. So, rule T1 is only completed after the application
of T2. This final application removes the tokens B (“cat” and “fish”), and so
only the main head A (“saw”) is kept. Thanks to this technique we are able to
separate specific rules for nominal modifiers from those used to deal with verb
arguments, and thereby, we keep the simplicity of the rule system. This is a
similar strategy to the arc-eager algorithm, but here applied only on embedded
expressions.

However, the solution proposed in (5) is applied to those expressions with
only one level of recursion. It is easy to find expressions with more recursion
levels giving rise to multiple embeddings: e.g. “I saw a dog watching cats eating
fish” (Figure 6). This is also the case of expressions that make a chain with
several NOUN-ADP-NOUN patterns, for instance “president of the Republic of
Portugal”, exemplified in (7).
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A B A B A B

saw dog watching cats eating fish (6)

A B A B A

president of Republic of Portugal (7)

To deal with this type of complex embedded structures, we need to suspend
the Reduce operation within the two rules required to analyse the expression.
Below, in (8), the two rules, T ′

1 and T ′
2, are first applied without the Reduce

operation as many times as necessary to recursively create all the arcs. The
Reduce operations are only applied once all the arcs have been created (final
application of T1 and T2); they remove all tokens that are dependent on the
main head (the first A to the left):

T ′
1: A* B

T ′
2: B* A

T2: B← B A

T1: A← A B

(8)

The strategy described in (8) allows us to deal with multiple embeddings,
such as the analyses shown in examples 6 and 7.

4.6 Ambiguity

The temporal suspension of the Reduce operation also permits to introduce
ambiguous structures, such as those caused by PP-attachment. In the expression
“saw a man with”, the preposition “with” can be dependent either on “man”
or “saw” (see example (9)).
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A B C

saw man with

(9)

Yet, the suspension of Reduce is performed here in a slightly different way.
As it is shown below in (10), C can be dependent either on A (first line) or on
B (second line). This complex rule is constituted by three patterns containing
the same PoS tags but with different core elements and, then, with different Arc
operations. The final reduction is performed when all dependencies involved in
the rule are identified. As a result, the final output (the left-side of the rule) is
just that element that has been identified as head at least once, but never as
dependent in any Arc operation. In our example, this element corresponds to
token A. Contextual tokens are enclosed in round brackets to be distinguished
from the two core elements. As in the examples of the previous section, each
head resulting from an Arc operation is noted with an asterisk:

T1: A←





A* (B) C

(A) B* C

A* B (C)



 (10)

Notice that this kind of temporal suspension can lead to breaking up the
single-head principle. A dependent token may have several heads, as C in the
example above. Ruling the single-head constraint out allows us to yield a richer
dependency analysis. For instance, adjective complements of verbs can be seen
as dependent on both the verb and a noun: in the expression “such experiences
make life worthwhile”, the adjective “worthwhile” can be analyzed as being
dependent on both the verb “make” and the noun “life”. This analysis is only
possible if the Reduce operation is suspended.

This strategy makes parsing non-deterministic.

4.7 Non-Projective Dependencies

The formalism allows us to generate non-projective trees in a straightforward
way. For instance, take the following rules:

T1: A← A (B) C

T2: B← B (C) D
(11)

These two rules generate non-projective trees (trees with crossing arcs) such
as that depicted in (12), which can be the analysis of expressions like: “I met a
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man yesterday with blond hair”, where the adverb “yesterday” depends on the
verb “met”, the noun “man” depends on the verb “saw”, and the preposition
“with” depends on the noun “man”. In this particular case, A=met, B=man,
C=yesterday, and D=with.

A B C D

I met a man yesterday with blond hair

(12)

However, the above rules, if they are not lexicalized, may often generate odd
parses. For instance, they erroneously create crossing dependencies in the anal-
ysis of an expression like “I met a man away from home”. In order to avoid odd
analyses, lexicalized rules would be necessary, i.e. rules should be enriched with
lexical classes. To correctly analyze the last expression, we would require to de-
fine rules with the same patterns as those in (11), but being projective and only
applied on adverbs that subcategorize prepositions, e.g. “away” subcategorizes
“from”. Yet, lexicalized rules have low coverage and are language-dependent.
As we will see in the next section, our objective will be to define grammars
containing high coverage rules shared by several (even if related) languages. In
the experiments described later, lexicalized rules with low coverage and those
giving rise to non-projective trees will not be considered.

5 System Overview

5.1 The Modules

Our compression parsing strategy has been inserted into a more generic natural
language architecture (see Figure 3), which consists of the following modules:

- A set of PoS tagging adapters that modify the output of three PoS taggers,
namely FreeLing (Padró and Stanilovsky, 2012), Tree-Tagger (Schmid,
1995), and LinguaKit (Garcia and Gamallo, 2015; Gamallo and Garcia,
2017) so as to generate an unified PoS tagged format, where each token
is represented as a pair: ‘main PoS tag + feature structure’. So, the
objective of the adapters is to propose a common notation for all tagsets
used by different PoS taggers. The result of this process is the input of
compression parsers.

- A set of grammars written with a specific grammar notation.
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Figure 3: Architecture of DepPattern

- A grammar compiler, written in Ruby, that takes a particular grammar
as input and generates a compression parser, written in Perl.

- A set of parsers in Perl, generated by the compiler from various grammars,
that take as input the output of the adapters and produce dependency-
based analyses.

The whole system, called DepPattern,6 is released under the GNU Gen-
eral Public License (GPLv3). Six DepPattern parsers were generated. On the
one hand, there are language-specific parsers for Spanish, Portuguese, English,
French, and Galician. A sound evaluation of the Spanish and Portuguese parsers
was reported in Gamallo (2015). On the other hand, we also used DepPattern to
implement a specific parser with Universal Dependencies, called MetaRomance,
that can be applied to any Romance language and whose performance will be
analysed and discussed later in Section 6. The parsers are robust and very ef-
ficient: they are able to parse about 6,000 tokens per second on a Core i7-3770
processor at 3.4 Ghz. The system can be run on any GNU/Linux distribution.

Among all the modules of DepPattern, special attention will be paid to
grammar notation.

5.2 Grammar Notation

To write compression rules, it is necessary to handle regular expressions and
programming language code, too unmanageable for linguists. In order to make
the task of writing rules easier, we have defined a more intuitive grammar no-
tation. Such a notation is a higher-level language that is encoded in Perl code
by means of a grammar compiler written in Ruby.

According to the high-level notation, a dependency-based rule is constituted
by three elements:

6https://github.com/gamallo/DepPattern
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• A pattern of tagged tokens, where each token is represented with a ba-
sic PoS tags and, if required, a list of ‘attribute-values’ providing more
specific linguistic information. The pattern is constituted by two core ele-
ments and, if it is relevant for the guessing, an open number of contextual
elements enclosed with square brackets.

• The name of the dependency relation between the two core elements. This
name triggers an Arc operation.

• A set of optional operations applied on the core elements: Agreement,
Add, Corr, Inherit, etc.

By default, each rule activates the Reduce operation, but it is possible to
postpone it by explicitly introducing some suspension markers. Two suspension
markers are the commands NoUniq and NEXT, which can be added to a rule to
suspend the Reduce operation. The former introduces a permanent suspension,
while the latter just applies the suspension until the next rule.

Let’s take an example of a rule:

Modif R : NOUN [ADV<type:Q>]? ADJ
Agr: number, gender
%

The colon separates the pattern of PoS tags (on the right) from the name
of the dependency: Modif R. Symbol ‘%’ means the end of the rule. This rule
identifies a dependency, labeled as ‘Modif R’, between a noun and an adjective
situated on its right, with or without an interposed adverbial quantifier (whose
type is ‘Q’). ‘Agr’ stands for the operation of agreement, where ‘number, gender’
are the names of the attributes whose values must be shared by both the head
and the dependent. At the end, Reduce removes the dependent token, ADJ,
from the input sequence.

The specific names for PoS tags and dependencies must be declared in two
configuration files. The linguist can modify the name of any PoS tag and can
declare all those dependency labels he/she needs to write the grammar. In ad-
dition, lexical classes containing large list of lemmas can be declared in another
configuration file. For instance, we can define the extensional class of verbs
requiring ‘human’ subjects by creating a list of such verbs, and use this class as
a specific lemma within a rule.

This grammar formalism as well as further linguistic properties were de-
scribed in Gamallo and González (2011). For more details, there is also available
a tutorial and specific documentation.7

5.3 The MetaRomance Grammar

We have written a small grammar with about 150 cross-lingual rules that can be
applied to all Romance languages using Universal Dependencies (Nivre et al.,

7http://gramatica.usc.es/pln/tools/deppattern/tutorial.html
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2016). The cost of writing the grammar is not high since its size is small
and the rules are not language-specific. The strategy we followed to write the
MetaRomance grammar is based on two methodological principles:

• Start with high-coverage rules.

• Otherwise, develop rules shared by as many Romance languages as possi-
ble.

The objective is to find a trade-off between high performance and low effort,
i.e. we look for efficiency. Most rules satisfy these two principles, giving rise
to a broad-coverage parser. We have not defined non-projective rules since, in
general, they have low coverage and are language dependent.

Following these principles, MetaRomance consists of simple cross-lingual and
(almost) delexicalized rules likely to be shared by most Romance languages.
Rules are almost delexicalized because they are mainly applied on Universal
PoS-tags, only containing few grammar words (some prepositions and conjunc-
tions) together with a small list of verbs. The Universal Dependencies (UD)
initiative (Nivre et al., 2016) provides linguistic criteria to create harmonized
representations across languages, so it fits perfectly with our objective of defin-
ing cross-lingual rules. In fact, the availability of homogeniously annotated
treebanks is an interesting test bench for cross-lingual dependency parsing re-
search (McDonald et al., 2011; Mcdonald et al., 2013; Vilares et al., 2016). Most
phenomena not covered by the MetaRomance grammar are related with some
long distance dependencies, including subordinate clauses in non-canonical po-
sitions, or complex issues derived from coordination.

The DepPattern formalism has been adapted so as to let it interpret Uni-
versal Dependencies (UDv2). All rules of MetaRomance were written in about
12 hours by an expert linguist who has skills in the DepPattern formalism, but
with no prior knowledge in UD. He took into account the syntactic structure of
all Romance languages of the UDv2 treebanks except Romanian (Nivre et al.,
2017a).

Finally, structural ambiguity was not taken into account. It follows that the
derived parser is fully deterministic.

6 Experiments

This section presents several evaluations of MetaRomance using the data pro-
vided by the CoNLL 2017 shared task on UD parsing (Zeman et al., 2017). We
will show the results of the following experiments:

• Comparison of MetaRomance with other supervised approaches on all the
testing treebanks of Romance languages.

• Analysis of the performance of several parsers on different treebanks of
the same language.
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pos token lemma tag morphological feat. head label

1 They they PRON Case=Nom|Num=Plur 2 nsubj
2 buy buy VERB Num=Plur|Per=3|Tense=Pres 0 root
3 and and CONJ 2 cc
4 sell sell VERB Num=Plur|Per=3|Tense=Pres 2 conj
5 books book NOUN Num=Plur 2 dobj
6 . . PUNCT 2 punct

Table 2: CoNLL-U representation of “They buy and sell books.”

• Comparison of MetaRomance with a supervised delexicalized parser for
Romance languages.

Some of these experiments were previously reported in our contribution to
CoNLL-2017 Shared Task Garcia and Gamallo (2017).

6.1 Datasets and Evaluation

Test data are taken from the Universal Dependencies release 2.0 (Nivre et al.,
2017b) and are available for 45 languages. It is important to point out that there
are more than one treebank for certain languages. Typically, the additional tree-
banks come from a different source whose texts are from different domains. This
is crucial for the second experiment that will be reported later. Treebanks were
built under the CoNLL-U data format. This format, which is used for Uni-
versal Dependencies treebanks, is deliberately similar to the CoNLL-X format
that was used in the CoNLL 2007 Shared Task (Nivre et al., 2007) and has be-
come a de facto standard since then. Each word has its own line and there are
tab-separated columns for, at least, the following itens: token position, token,
lemma, POS tag, morphological features, head position, and dependency label.
For instance, Table 2 (partially) encodes the English sentence They buy and sell
books. in CoNLL-U format.

The evaluation focuses on dependency relations, more precisely on the head
node (sixth column in Table 2) and the dependency label (seventh column). The
evaluation starts by aligning the columns produced by the system to the gold
standard ones. Once the columns are aligned, the evaluation computes LAS
as the main scoring metric. Labeled Attachment Score (LAS) is a standard
evaluation metric in dependency parsing. It represents the percentage of words
that are assigned both the correct syntactic head and the correct dependency
label. A dependency is therefore scored as correct only if both nodes (head
node and label) of the relation match existing gold-standard nodes. Precision
P is the number of correct relations divided by the number of system-produced
nodes; recall R is the number of correct relations divided by the number of
gold-standard nodes. We then define LAS as the harmonic mean (F1 ) of P and
R, where

P =
#correctRelations

#systemNodes
(13)
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R =
#correctRelations

#goldNodes
(14)

LAS =
2PR

P +R
(15)

If the evaluated parser yields a full analysis, then there is the same number
of system nodes as gold nodes, and consequently: P = R = F1.

Besides LAS, there is another metric, Unlabeled Attachment Score (UAS),
which can also be used to evaluate the performance of a depedency parser. This
metric is defined in the same way as LAS but only measures the percentage of
words that have the correct head, without considering dependency labels.

6.2 Results at CoNLL-2017 shared task

According to the requirements of the shared task, the participants were asked to
submit results of all test treebanks. As it was expected, our system obtained low
LAS and UAS results from the whole dataset. The macro-average of MetaRo-
mance over all test treebanks was 34.98% LAS, 43.81% UAS. These poor results
were expected due to the characteristics of MetaRomance: an almost delexical-
ized parser which does not require training data, with simple rules only based
on the syntactic structure of Romance languages.

Concerning efficiency, MetaRomance needed 29 minutes and 155MB of mem-
ory to parse all the testing sets on the TIRA virtual machine provided by the
shared task. It was one of the fastest systems in the shared task, namely 5th
out of 32 participants.

Table 3 shows the official MetaRomance results on every treebank of a Ro-
mance language evaluated in the shared task. Evaluation was performed with
the same input and the same evaluation script provided by the organizers at
the shared task. On average, our system achieved F1 results of 58.9 (LAS) and
66.1 (UAS). The worst results in Romance languages were obtained in Roma-
nian; this fact was expected because (i) Romanian is linguistically more distant
than the other Romance languages (Gamallo et al., 2017), and (ii) we did not
implement any dependency rule with this language in mind.

The official MetaRomance results were obtained by using as input the to-
kenized, lemmatized and PoS-tagged data provided by the UDPipe baseline
models (Straka et al., 2016).

Even if the values in Table 3 are not comparable with most supervised sys-
tems in the competition (the best one reached 73.30% LAS (Dozat et al., 2017)),
our simple parser obtained competitive results in some languages, such as Span-
ish (es), Italian (it), and Portuguese (pt). It is also interesting to point out the
results obtained by MetaRomance on the parallel treebanks (pud), which are ad-
ditional test sets extracted from parallel corpora without corresponding training
data. Interestingly, MetaRomance performed better in the pud datasets than
in the others treebanks of the same languages (with only one exception: UAS
results in pt and pt pud). By contrast most supervised systems in the shared
task decreased their performance in the pud datasets in several points. In this
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Treebank LAS UAS

ca 57.71 65.57
es 59.80 67.20
es ancora 60.99 69.63
es pud 65.49 71.68
fr 54.10 62.20
fr partut 56.17 63.10
fr sequoia 55.16 60.76
fr pud 58.67 65.94
gl 54.87 62.59
gl treegal 57.20 63.87
it 62.96 70.35
it pud 65.49 71.82
pt 65.50 71.77
pt br 56.19 65.81
pt pud 66.35 71.43
ro 45.04 53.90

average 58.86 66.10

Table 3: Results on the Romance languages test sets (predicted tokens, lemmas,
morphological features, and PoS-tags).

respect, MetaRomance leaded some supervised approaches in treebanks such as
pt pud or gl treegal (this last one with small training data).

It is worth noticing that we had to modify the original MetaRomance to
adapt its results to the evaluation script provided by the organizers. This script
requires full parses without more than one root per sentence and without cicles.
In other words, the official script requires that precision is equal to recall. As
the grammar of MetaRomance is not complete, giving rise to partial parses, we
implemented a post-editor script linking all tokens without head information to
the corresponding sentence root. The result of this post-editor script is a full
parse.

6.3 Cross-treebank performance

Our second experiment compares the cross-treebank performance of supervised
models (i.e., parsing different treebanks of the same language with the same
model). To carry out this experiment we trained a UDPipe model (Straka
et al., 2016) in each training dataset of Spanish, Galician, and Portuguese.
These models were trained using the default parameters of UDPipe 1.1, but
removing the lemmas and the morphological features of the treebanks, with the
aim of building parsers with more robust performance among the different test
sets.8

8It is important to note that using the models provided by the shared task organization to
parse test data from different treebanks than the one used for training (e.g, train on fr-sequoia
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Target Source

Spanish
es es ancora

LAS UAS LAS UAS
es 76.85 81.19 64.25 71.95
es ancora 67.25 76.43 79.36 83.42
es pud 74.88 82.26 67.67 76.77

Galician
gl gl treegal

LAS UAS LAS UAS
gl 73.71 77.17 58.03 68.47
gl treegal 50.98 63.37 65.24 70.81

Portuguese
pt pt br

LAS UAS LAS UAS
pt 78.74 82.43 68.00 77.92
pt br 66.85 76.19 82.10 84.83
pt pud 71.59 77.58 67.75 77.87

Table 4: Results of UDPipe models trained in the source treebanks (columns)
on the target test sets (rows).

Table 4 includes the LAS and UAS values of each model (in the columns) on
the target treebanks (on each row). These numbers indicate that the results of
supervised parsers show noticeably differences when parsing a different treebank
to the one used for training, even if both corpora belong to the same language.
These differences are much higher than those of MetaRomance, exceeding 22%
in gl parsing gl treegal, more than 15% in the analysis of es by es ancora, or
more than 14% in pt br parsing pt.

Furthermore, these results (both the UDPipe and the MetaRomance ones)
suggest that careful analyses of the different treebanks are required, aimed at
knowing whether these large variations are due to different domains, annotation
issues, or linguistic and syntactic differences.

6.4 Comparison with a cross-lingual delexicalized parser

In the next experiment we evaluate the original version of MetaRomance, which
yields partial parses, and compare its performance with a delexicalized parser
trained with a combined corpus which includes sentences from every Romance
treebank.

In this experiment, the evaluation protocol is slightly different from that
required by the official evaluation script provided by the organizers of CoNLL
2017 shared task. Our objective is to overcome some restrictions of the official
script which could be unfair for unsupervised systems such as MetaRomance.
Firstly, in the current evaluation, we do not consider punctuation marks since
their dependencies have not clear linguistic criteria and, therefore, they are too
dependent on the ad-hoc decisions taken by the treebank annotators. Secondly,

and test on fr) produce results with drops of more than 26% LAS.
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Treebank LAS UAS

ca 64.86 72.42
es 68.43 76,87
es ancora 68.48 75.10
es pud 67.92 72.17
fr 68.11 74.51
fr partut 69.96 77.38
fr sequoia 71.26 75.35
fr pud 65.03 68.59
gl 64.11 71.06
gl treegal 72.18 77.55
it 72.70 77.22
it pud 66.19 70.08
pt 74.93 79.49
pt br 66.21 74.55
pt pud 68.10 70.83
ro 58.45 65.71

average 67.93 73.56

Table 5: Results obtained by the original version of MetaRomance (partial
parsing) on the Romance languages test sets (tokens, lemmas, morphological
features, and PoS-tags from the gold standard), without taking into account
punctuation.

the parser takes now clean texts as input instead of noisy texts which were
PoS tagged by UDPipe processing modules. Clean input texts are constituted
by tokens, lemmas, morphological features and PoS tags taken from the gold
standard dataset. Finally, MetaRomance is evaluated without considering the
post-editor module that assigns the root index to any token without head value.

In sum, MetaRomance is evaluated as a partial parser without considering
elements that are not well suited for unsupervised systems. In the case of partial
analysis, precision is different from recall, but LAS and UAS still stand for their
corresponding F1 score. Table 5 shows the LAS and UAS scores of MetaRo-
mance. These scores are now over 10% higher than in the official evaluation,
being a little closer to state-of-the-art supervised strategies.

We compared the performance of MetaRomance with a delexicalized parser
trained with a combined corpus which includes sentences from every Romance
treebank. This is a competitive supervised baseline in cross-lingual transfer
parsing work, which gives us an indication of how our system compares to
standard cross-lingual parsers.

We trained 50 UDPipe models by randomly selecting from 1 to 50 sentences
of each Romance treebank in the training data. Then, we obtained the average
results on all the Romance test treebanks, and plotted them together with the
MetaRomance performance in Figure 4. These scores were obtained with the
(non-official) evaluation script defined above, without puntuation marks. The
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Figure 4: LAS values of MetaRomance versus the learning curve (0–20,000
tokens) of a delexicalized UDPipe model trained with random sentences from
all Romance treebanks. Results are average F1 values of all the testing Romance
treebanks.

input in also the same, consisting of lemmas and PoS tags from the gold standard
test dataset.

This figure shows that MetaRomance obtains similar results (≈ 68% LAS)
to those achieved with about 2,000 tokens of all the Romance treebanks. The
learning curve also suggest that it is difficult for cross-lingual models with no
lexical features to keep increasing their cross-lingual performance on Romance
languages. More precisely, UDPipe achieves 72% with about 5,000 tokens, but
it cannot surpass 73% even with a training corpus of 20,000 tokens.

6.5 Discussion

Our system is a dependency parser that requires no training, and is mainly
built using generic rules defined on the basis of UD tags and constraints. The
experiments performed in this paper provided some interesting results that claim
for further research in cross-lingual parsing.

On the one hand, there are noticeable differences when parsing different
treebanks of the same language, both using a rule-based system and harmo-
nized supervised models. Results showed that the performance of MetaRo-
mance changes less across different treebanks than supervised methods, which
turn out to be very dependent on the text domain used to train the system.
In this respect, it could be interesting to analyze the source of these variations,
and MetaRomance could be useful for this purpose because it uses linguistically
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transparent rules based on PoS-tags.
On the other hand, the learning curve of a cross-lingual delexicalized model

reinforces the idea that lexical features are required to obtain high-quality pars-
ing results. In this respect, further experiments could compare this learning
curve to lexicalized cross-lingual models, which seem to obtain good results in
languages from the same linguistic family. Concerning MetaRomance, the addi-
tion of new rules (both lexicalized and without lexical information) could allow
the parser to better analyze different languages.

Finally, and even if this is not a fair comparison, it is worth noting that
MetaRomance obtained higher results in Romance languages than those achieved
by UDP and reported in Mart́ınez Alonso et al. (2017). UDP is a training-free
parser based on PageRank and a small set of head attachment rules, being more
generic than MetaRomance (it can be applied to any language with more ho-
mogeneous results than our system). The differences on Romance languages
vary between few decimals to more than 6% UAS, but the experiments were
performed using different versions of the UD treebanks.

The analysis of results sheds light on several properties of the two evaluated
systems.

7 Conclusions

The work described in the article can be seen as a contribution to improve old
parsing strategies introduced at the end of the twentieth century, when most
efficient techniques were based on rules/FST and constructive approaches. In
particular, we described a grammar-driven parser based on FST, called com-
pression parsing, which takes into account some elements from deterministic and
incremental dependency parsing, namely Arc and Reduce transitions. This com-
pression method, implemented in DepPattern, was compared to a data-driven,
transition-based system: MaltParser. The experiments showed that the data-
driven system has a clearly better performance when applied on test sentences
belonging to the same domain (and same linguistic criteria) as the training set.
However, the grammar-based parser seems to be more stable across domains,
genres, and languages.

The cost and effort of developing compression parsers for several languages
is not very high, since they can achieve reasonable performance using just very
simple, cross-lingual, and general-purpose grammars. In this article, we have
also introduced a simple methodology to write cross-lingual and general-purpose
grammars. This methodology was applied to build MetaRomance, a generic
grammar for most Romance languages. We claim that the human effort of
building a generic grammar for Romance languages is clearly lower than that
used to build language-specific treebanks for all these languages. This is a
relevant feature for dealing with under-resourced languages.

In future work, it would be interesting to compare a variety of grammar-
driven systems by measuring, not only their performance, but also the complex-
ity of the underlying grammar: number of rules, size (in bytes) of the source
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files, etc. It should also be important to quantify and compare the cost and
effort of both writing grammars and building treebanks. We also intend to
write cross-lingual grammars for other language families (e.g. Germanic and
Slavic ones). Moreover, to complement quantitative evaluation, it will be neces-
sary to define objective protocols to compare parsers on the basis on qualitative
evaluation (Lloberes et al., 2014).

Finally, we claim that FST-based parsing techniques simulate how we solve
problems quickly, by taking easy decisions first which, in turn, makes it easier
to solve further complex tasks. However, these parsing techniques are far from
simulating two other interesting cognitive operations: first, how grammars are
learnt and, second, how sentences are processed. Data-driven approaches can
be seen as a good approximation to the way humans learn grammars, while
incremental left-to-right parsing can be seen as a simulation of how humans
process and understand input sentences. Here, a question arises: would it be
possible to define a method taking advantage of all those parsing strategies? In
other words, could it be possible to model a strategy that learns grammar rules
from data, orders them as cascades of progressively more complex transducers,
and applies them to sentences in an incremental way? A method provided
with these three ‘human properties’ would be closer to the canonical systems
in Artificial Intelligence, since the main objective would be not only to produce
parse trees, but also to simulate how humans understand sentences.
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