
Language Resources and Evaluation manuscript No.
(will be inserted by the editor)

Is Singular Value Decomposition Useful for Word
Similarity Extraction?

Pablo Gamallo Otero · Stefan Bordag

Received: date / Accepted: date

c© Springer-Verlag

Abstract In this paper, we analyze the behaviour of Singular Value Decomposition in

a number of word similarity extraction tasks, namely acquisition of translation equiv-

alents from comparable corpora. Special attention is paid to two different aspects:

computational efficiency and extraction quality.

The main objective of the paper is to describe several experiments comparing meth-

ods based on Singular Value Decomposition (SVD) to other strategies. The results lead

us to conclude that SVD makes the extraction less computationally efficient and much

less precise than other more basic models for the task of extracting translation equiv-

alents from comparable corpora.

Keywords Information Extraction · Word Similarity · Comparable Corpora ·
Singular Value Decomposition

1 Introduction

Singular value decomposition (SVD) is a matrix algebra operation that can be used

to reduce matrix dimensionality yielding a new high dimensional abstract space, in

a similar way as principal component analysis. There is a large family of word space

models applying SVD to reduce the co-occurrence matrix extracted from the input

corpus. Arguably, the most popular word space model based on SVD to extract se-

mantic information from raw text is Latent Semantic Analysis [27], which represents

the vector space as a word-by-document co-occurrence matrix. If the main application

is information retrieval, that model is also referred to as Latent Semantic Indexing

F. Author
Departamento de Ĺıngua Espanhola, Faculdade de Filologia
Universidade de Santiago de Compostela, Galiza, Spain
E-mail: pablo.gamallo@usc.es

S. Author
Max Planck Institute for Social Anthropology in Halle/Saale
Germany
E-mail: bordag@eth.mpg.de



2

(LSI) [11]. Usually it is being used for various kinds of similarity computations, such

as (semantic) word similarity. There are also derivations of the initial model, such as

probabilistic LSA, [22,23], and many different applications ranging from writing style

discovery [49] to video categorization [47], with citation counts of the original LSA

publication ranging in the several thousands.

Proponents of SVD in LSI (for example [45,31,34,6]) and LSA (for example [38,

48,32,22]) argue that this technique provides the word space model with two positive

features: on the one hand, matrix reduction allows engineering applications to be faster

and less memory demanding with optimizations such as the Hebbian algorithm [20] or

QUIC-SVD [24], see also next section for more details. On the other hand, such a

high dimensional abstract model is claimed to capture many human cognitive abilities,

ranging from acquisition recognition vocabulary to sentence-word semantic priming

and judgments of essay quality, as evidenced in many LSA online tutorials. In short,

SVD is supposed to make information extraction applications more computationally

efficient and more similar to human semantic acquisition. However, experiments and

evaluations comparing SVD-based techniques with other models have not always shown

that such a dimensionality reduction improves the quality of similarity computations. In

some experiments, SVD-based approaches performed better than baseline strategies,

but there are cases where they produced worse results and there is a body of work

describing these mixed results [33,29,42]. As far as the efficiency is concerned, no

comparison among different word space models has been reported in previous work. It

seems as if it is simply assumed that SVD reduces the computational cost of semantic

extraction algorithms.

In this paper, we first analyse the computational efficiency of SVD matrix reduction

before computing vector similarity. We describe more efficient ways of representing a

sparse matrix without previously computing SVD (see Section 2). Then, in Section 3,

we discuss some problems underlying previous experiments where SVD-based methods

were compared to other approaches in a particular semantic extraction task, namely

synonymy detection. Then, Section 4 briefly introduces a number of methods to extract

translation equivalents from comparable corpora. Some of them rely on dimensionality

reduction by SVD. In Section 5, we describe an experiment to compare and evaluate

the methods introduced in the previous section. We propose a non-ambiguous, robust,

and large-scale evaluation method.

Such an evaluation allows us to conclude that SVD-based methods are less com-

putationally efficient and much less precise than other word space models for the task

of extracting translation equivalents from comparable corpora. While we do not draw

conclusions about tasks we did not evaluate explicitly, the described procedure allows

us to formulate hypotheses about which other tasks would obtain similar results, such

as for instance word similarity extraction from monolingual corpora.

2 Is SVD Faster for Similarity Computation and More Economical for

Storage?

It is assumed by SVD proponents that a matrix reduced by SVD “has the advantage

that all subsequent similarity computations are much faster”[37], since the final ma-

trix representation “is more economical, in the sense that N original dimensions have

been replaced by the k < N best surrogates by which they can be approximated”

[11]. Other voices state that “The surprisingly small requirements of SVD dimensions



3

resolve the computational restrictions” [45] or that “The use of SVD results in a very

large space and processing time advantage by drastically reducing the size of the rep-

resentation space. If we took LSA without SVD as the original basis for comparison,

and then discovered the advantages of SVD with its ability to ’do more with less’, it

would clearly be judged superior to the non-SVD LSA model.” [48], or “In order to

solve these [high-dimensionality and sparseness] problems, the original n-dimensional

vector space is converted into a condensed, lower-dimensional, real-valued matrix using

Singular Value Decomposition” [31]. Sometimes even server-costs are put directly into

connection with running SVD: “In these [commercial] applications, the processing time

and RAM required for SVD computation, and the processing time and RAM required

during LSI retrieval operations are all roughly linear in the number of dimensions, k,

chosen for the LSI representation space. In large-scale commercial LSI applications,

reducing k values could be of significant value in reducing server costs.” [6].

We claim that the gain in computational efficiency by operating on the reduced set

of matrix dimensions can be easily outperformed by an efficient data representation

making use of the fact that the co-occurrence matrix built from any linguistic corpus

is sparse. In order to compute the similarity between all words it is not necessary to

reduce the dimensionality of the entire vector space. Instead of representing the whole

word space model as a full matrix (with n2 required storage space, or trading space

for time by using something like the Hebbian algorithm [20]), it could be represented

in such a way that a vector uses only as much memory as there are non-zero entries

in it. Zero values are easily induced, or rather assumed, later by the algorithm used to

compute vector similarity.

2.1 Data Structures for Storing Matrices

Given the power-law distribution of words in a corpus, all co-occurrence matrices rep-

resenting lexical knowledge are sparse. When storing and manipulating large sparse

matrices on a computer, it is beneficial and often necessary to use specialized data

structures that take advantage of the sparseness. Many if not most entries of a sparse

matrix are zeros that do not need to be stored explicitly. Ignoring the sparseness, a

matrix can be stored as a two-dimensional array, including both its zero and non-zero

elements. Alternatively such a matrix can be stored in various packed storage modes,

only including non-zero elements.

Tables 1 and 2, respresent co-occurrences that were extracted from the following

sentence with a window size of 1 and taking only content words, recognizable by refer-

ence numbers:

“The man 1 who works 2 in the office 3 likes 4 Chinese 5 food 6.”

Table 1 shows a word-by-word matrix where target words are represented in rows

while word contexts are in columns. Hence, “man” represents both the first row and the

first column, “works” is the second row and the second column, and so on. The result

is a 6-by-6 matrix with 26 zeros and 10 non-zero values. The only non-zero appearing

in the first row (“man”) represents its co-occurrence with “works” (second column).

Such a data structure is considered to be a naive representation of a sparse matrix

and it has a storage space complexity of O(n2) and an access complexity of O(1) (one

computational step needed to access an element).



4

Table 1 Sparse co-occurrence matrix

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

Table 2 Packed storage with hash table

1− > {2− > 1}
2− > {1− > 1, 3− > 1}
3− > {2− > 1, 4− > 1}
4− > {3− > 1, 5− > 1}
5− > {4− > 1, 6− > 1}
6− > {5− > 1}

Table 3 Dense matrix reduced with SVD

0.122 0.845 0.067
0.396 0.190 0.810
0.067 1.060 0.037
0.414 -0.084 0.967
-0.152 0.010 -0.084
0.156 -0.152 0.414

Table 4 Hash table representation of the SVD-reduced matrix

1− > {1− > 0.122, 2− > 0.845, 3− > 0.067}
2− > {1− > 0.396, 2− > 0.190, 3− > 0.810}
3− > {1− > 0.067, 2− > 0.060, 3− > 0.037}
4− > {1− > 0.414, 2− > −0.084, 3− > 0.037}
5− > {1− > 512, 2− > 0.010, 3− > −0.084}
6− > {1− > 156, 2− > −0.152, 3− > −0.414}

Another possible storage mode for a sparse matrix is the hash table depicted in

Table 2, with a key-value representation. Keys are structured as a two-dimensional

array containing only those row-column pairs with non-zero values. Like in a matrix

structure, hashes also allow to access any arbitrary element in a constant amount of

time by means of using a hash function that, given a key, computes the address of the

value stored for that key. Hashtable implementations usually have a memory overhead

of 20% over the actual amount of data points to be stored. However, this is a constant

overhead that is much better than the quadratic overhead of a matrix representation.

Hence hashtables have a storage complexity of O(3 × n × m + 0.2 × n) where m is

the average number of non-zero co-occurrence observations per word and an access

complexity of O(1).

2.2 SVD and Dimensionality Reduction

The matrix resulting of applying SVD on a sparse matrix is not sparse any more. It

is a condensed and smoothed representation capturing indirect word associations that

were not observed in the input sparse matrix. It seems obvious that any dimensional



5

reduction yields a smaller structure. However, that is true only if we consider the full

matrix storage mode. Table 3 represents a new condensed 6-by-3 matrix after having

applied SVD and having retained the 3 most important dimensions (those with the

greatest variance in the orginal matrix). This condensed structure is smaller than that

depicted in Table 1. Yet, as it does not contain zero values, no packed storage would

help saving memory. In fact, the hash table depicted in Table 4, built from Table 3,

even requires much more memory to be stored than the packed representation (Table

2) of the original sparse matrix. The hash table generated after SVD contains 18 values

while that built from the original matrix only contains 10. With larger corpora and

more sparse matrices, such a size difference tends to be bigger (see Section 5). So,

whereas the claim that SVD saves storage space is true (for instance in [37]), the

savings pale in comparison with other, much simpler methods.

Moreover, a problem arises when we try to compute word similarity taking as input

matrices reduced with SVD. This is discussed in the next subsection.

2.3 SVD and Algorithms to Compute Word Similarity

In a non-reduced vector space, in order to compute the pairwise similarity between

words it is not necessary to compare each target word with each other. Two words will

have non-zero similarity if and only if there is at least one third word with which they

both co-occur. This can be expressed as an algorithm that only compares word pairs

sharing at least one word context.

Due to the power-law distribution of word frequency, for most target words the list

of comparable words is very short (on the order of less than 100 words in a corpus

of more than 10 million words). Hence, assuming a fixed threshold of at most 100

other words to be compared with, the complexity of the entire algorithm becomes

linear O(100×n), instead of quadratic. For the few words that have significantly more

than 100 words to be compared with we ignore those other words and accept the risk

of unprecise results. In the experiments below we provide results from both ignoring

those other words or also taking them.

For those words that do have more than 100 other words to be compared with,

the selection criterion is set to take those with the highest significance with either the

input word or with the intermediate word (the co-occurrence they share with the input

word).

In our example, the algorithm should select only 4 word pairs to be compared

(“office” with “man” , “like” with “works” and “food”, “office” with “Chinese”), out

of 15 possible word pair candidates ( (6!/(6 − 2)!)/2 ). The comparable word pairs

share at least one word context, that is, they are associated by means of second-order

co-occurrences through a third word [28].

Such an algorithm turns out to be difficult to be implemented if the matrix has

been previously reduced by SVD. Indeed, the reduced matrix does not contain explicit

information on word-context co-occurrences. All words contain non-zero values in all

dimensions. Hence, unless the original sparse matrix also remains accessible, a SVD-

reduced matrix does not allow the algorithm to restrict the list of comparable word

pairs.

However, proponents of latent semantic analysis could claim that this naive algo-

rithm prevents us from comparing words with higher-order associations. According to

this, a SVD-reduced matrix is supposed to represent a more abstract and generic word



6

space since it tries to capture higher-order associations between words. More precisely,

it tries to induce a latent high order similarity structure that does not rely only on word

co-occurrences attested in the corpus (i.e., first-order and second-order co-occurrences).

If that assumption is true, SVD should allow to infer similarity between two words that

have never been observed with the same word contexts, but that could be linked by

third-order (or more) co-occurrences. The experiments described later on translation

equivalent acquisition will show that this assumption is supported by observable data.

Almost 10% of the correct translations proposed by the system are, in fact, bilingual

pairs of words that did not co-occur with a common context in the corpus. So, it seems

that the generalization performed by SVD is useful to search for latent semantics since

it enables finding third-or-more-order similarities. However, these benefits are entirely

outruled by the much stronger decrease in precision of second-order similarity.

In sum, this section led us to conclude that SVD does not help to reduce the

computational complexity of word similarity algorithms. Rather, compared with other

possible matters it even increases computational complexity. On the one hand, the re-

duced matrix needs more memory space to be stored than existing data structures (e.g.,

hash tables) and, on the other hand, efficient heuristics restricting the search for simi-

lar candidates cannot be easily applied. In fact, hash-tables and the similarity search

space restrictions allow an algorithm that is completely linear in its time-complexity,

something that is impossible with SVD. Additionally, even the comparisons themselves

are cheaper than in SVD, because on average less than 100 co-occurrences are being

compared, as opposed to the typical 300 dimensions or more of a SVD matrix.

The next section discusses quality aspects of SVD: how much improvement can be

achieved in semantic extraction from reducing dimensionality?

3 Do SVD-based Space Models Improve the Quality of Similarity

Extraction?

It has been claimed that SVD provides a significant qualitative improvement in several

NLP tasks, namely IR, automatic synonymy extraction, or sense discrimination, for

example: “The experiments reported in Schütze [40,41] give evidence that reduction to

this dimensionality does not decrease accuracy of sense discrimination. Space require-

ments for context vectors are reduced to about 1/10 and 1/20 for a 1,000-dimensional

and a 2,000-dimensional Word Space, respectively.” [42]. Such an improvement relies

on the assumption that SVD is a useful technique to emulate some human learning

processes [27], such as the acquisition of lexical information. This situation led some

authors to state that LSA is not only a practical strategy to obtain approximate esti-

mates of word similarities, but also a model of the human representations underlying

substantial portions of the acquisition and utilization of linguistic knowledge. In the

foundational paper, Landauer and Dumais [27] proposed that Latent Semantic Analysis

(LSA) constitutes a fundamental computational theory of the acquision and represen-

tation of knowledge. According to these authors, a statistical technique such as SVD

is both psychologically motivated and computationally appropriate to improve results

on semantic extraction.

We will not discuss the first statement on psychological motivation. This section will

be focused on whether or not it has been clearly demonstrated SVD helps improving

semantic extraction.



7

There exist many tests comparing SVD-based methods with either human judge-

ments or other automatic techniques. One of the most popular tests is to choose the

most appropriate synonym for a given word given a restricted list of four candidates.

We are interested in those evaluations comparing SVD, not with humans, but with

other automatic techniques. To compare the accuracy of two (or more) methods, it is

assumed that the system makes the right decision if the correct word is ranked highest

among the four alternatives.

We found two drawbacks with this kind of test: one is motivated by the hetero-

geneity of the elements involved in each experiment, and the other derives from the

size of the test itself.

3.1 Hetereogenous Tests

The experiments required to measure the precision of a synonym test involving several

variables with many possible instantiations:

– The type of questions. The most used are 80 synonym test questions selected from

the Test Of English as a Foreign Language (TOEFL). There are also 50 questions

selected from a collection of tests of English as a Second Language (ESL), and 300

Reader’s Digest questions.

– The training corpora. Many different corpora were used: some are traditional such

as British National Corpus (BNC), containing 100 million tokens, TASA corpus,

with 17 million tokens, Grolier’s Academic American Encyclopedia (GAAE), with

4,6 million tokens. Other corpora were gathered by web crawling: Stanford Corpus

(SC), with 30 million word types, English Gigaword collection (LDC), with a se-

lection of 1,1 million articles of the New York Times, and a terabyte of web data

crawled from the general web containing over 55 millions words (TERA). There

is also a corpus containing a set of documents retrieved from queries to Altavista

(ALTA).

– The type of similarity. Two general types of similarities can be distiguished: one

based on plain co-occurrences, using a significance measure such as pointwise mu-

tual information (PMI), the other relying on second-order co-occurrences (e.g,

where the association between two words is computed through a number of other

words, taken as word contexts).

– The type of context used to define co-occurrences. Some use documents or para-

graphs, others windows of size N , and others syntax-based patterns.

– The use or not of SVD. It is possible to separate the methods performing SVD

from those using the original sparse matrix. In fact, this is the parameter we would

like to evaluate.

– Other parameters: e.g., co-occurrence significance measure, type of similarity mea-

sure, use or not of an initial vocabulary (e.g., most frequent words) to define a

restricted list of seed contexts, etc.

To evaluate whether or not SVD improves the quality of the extraction, we would

need to define an experiment comparing two identical strategies except for the use or

not of SVD. However, the experiments performed to measure the precision in synonym

tests have differences with regard to, not only the use or not of SVD, but the use

of other significant variables: training corpus, type of similarity, etc. Table 5 depicts

a brief description of different experiments performed on the TOEFL synonym test



8

Table 5 Description of several experiments using TOEFL synonym test

Corpus Simil Context SVD Other Prec. ref.

Rapp1 BNC 2-order window=2 + weight:entropy 92.5% [38]
Baroni BNC 2-order window=5 + seed contexts 91.3% [2]
Rapp2 BNC 2-order syntax-based - 90.9% [38]
GLSA1 LDC 2-order window=16 + PMI and seeds 86% [32]
PMI1 TERA 1-order window=16 - 81.25% [43]
GLSA2 SC 2-order window=16 + PMI and seeds 76% [7]
PMI2 ALTA 1-order window=10 - 73.75% [44]
GLSA3 TASA 2-order window=16 + PMI and seeds 72% [7]
Rapp3 BNC 2-order window=1 - sim:cityblock 69% [38]
LSA1 GAAE 2-order document + 64.5% [27]
LSA2 TASA 2-order document + 60% [27]
PMI3 SC 1-order window=10 - 51% [7]

questions. Each experiment is described making use of the variables introduced above,

i.e., type of questions (here, we only selected experiments using TOEFL), corpus, type

of similarity, type of context, use of SVD, other properties, and precision achieved.

The table also assigns a bibliographic reference to each experiment. Experiments are

ranked by precision rates.

Table 5 lets us observe a number of experimental “families” that will be described

in more detail. The experiments with the name LSA are those that follow the standard

method defined by Latent Semantic Analysis: they make use of plain occurrence fre-

quency and then second-order similarity based on a word-by-document matrix reduced

with SVD. The family of GLSA experiments follows the method based on General

Latent Semantic Analysis. They introduce 3 different elements with regard to stan-

dard LSA: contexts are not documents but smaller windows; a small vocabulary with

frequent words is used to define the contextual dimensions of the matrix (which is

then less sparse); this matrix is weighted with pointwise mutual information (PMI).

A very similar method is defined in the Baroni experiment. The main difference is

that Baroni does not make use of PMI. The experiment performed in Rapp1 can be

situated between LSA and GLSA: it uses a small window as in GLSA, but, as in LSA,

it does not require a seed vocabulary to restrict the number of word contexts. So far,

all experiments relied on SVD. By contrast, the PMI family of experiments is based on

a simpler method with first-order similarity (i.e., only direct co-occurrences are needed

to compute word similarity), and without SVD. As the computational complexity of

such a method is not so high, it can be used to exploit huge document collections gath-

ered by crawlers or retrieved by web search engines. Note that experiment PMI1 uses

a huge corpus (TERA) with a terabyte of data. There are two remaining experiments

without SVD: Rapp2 and Rapp3. They both use standard 2-order similarity, but they

differ in the context definition: syntax-based and window-based, respectively.

As the experiments differ in more than one property, we claim that they do not

allow to compare the efficiency of using or not SVD in the task of extracting correct

synonyms. For instance, experiments Rapp1 and Rapp3 are perhaps those that are

more comparable for measuring the accuracy of SVD. They were applied on the same

corpus (BNC), they used both second-order similarity, and the window size was very

short in both cases: 2 and 1, respectively. It seems that they differ only in whether

they use SVD, or not. However, there are more significant differences: Rapp1 uses



9

an entropy-based weight to smooth simple co-occurrence frequencies, whereas Rapp3

seems to use log-likelihood for the same purpose. This is not explicitly said in [38] but

it can be inferred from a reference to a previous paper. Moreover, while Rapp3 uses as

similarity coefficient cityblock, Rapp1 makes use of a more usual metric: cosine. This

way, we cannot know whether the differences regarding precision (92% against 69%)

are mainly due to the use of SVD or to those other variables. We follow the same

reasoning when other pairs of experiments are compared, in particular, when they also

differ in the training corpus.

Besides, there is a further problem underlying these experiments: the test sets are

very small and no results of significance tests were reported which would allow to induce

confidence in the significance of the observed differences. And the fact that some of the

observed differences in our own experiments turn out to be not significant is a good

argument against trusting the significance of differences in much smaller experiments.

3.2 Small Test

A positive argument in favor of this type of test is that it allows an automatic eval-

uation. A drawback is that it is too small. We consider it small with regard to two

different properties. On the one hand, the list of selected test questions is insufficient:

the questions selected from TOEFL and ESL are only 80 and 50, respectively. One

single error decreases the total precision of the system by almost 2 percentage points.

Additionally, each question has only 4 alternative answers, that is, a baseline method

using random choice achieves 25% precision. To select a synonym candidate, the sys-

tem does not have to compare the target word with all words of the vocabulary but

only with a reduced list containing 4 candidates. These two drawbacks make the test

not very reliable to compare the performance of extraction methods.

Contrary to this test, we provide another test method with a robust, large-scale

automatic evaluation. On the one hand, we use a list of several thousands of test words

and, on the other hand, the number of candidates for each choice is the entire available

vocabulary. To define such an evaluation protocol, we modify the extraction method to

be compared. More precisely, we evaluate methods to extract translation equivalents

from comparable corpora. Notice that a translation equivalent of a source word could

be conceived as its best synonym in another language. So, as in the synonym tests

analyzed above, the goal of our extraction is also to identify “synonyms” of a word in

a different language from a sparse matrix with bilingual contexts. The main reason for

this change is that evaluation can now be provided with a large-scale gold standard: a

bilingual dictionary with thousands of test words and their correct translations.

To compare the efficiency of SVD in such a task, the evaluated methods differ

only in whether they use SVD, or not. The remaining parameters (i.e., corpus, type of

similarity, measures, and contexts) are constant. This allows us to remove noisy and

unpredictable variables when observing the specific behaviour of SVD. This means that

at least for the scenario of translingual word similarity extraction, any conclusions

obtained from these experiments are likely to be universal, especially if the results

remain the same for two different language pairs. These conclusions are not, of course,

necessarily generalizable to other scenarios, such as information retrieval even though

they do give hints on how a similar comparison might fare there.



10

4 Methods to Extract Translation Equivalents From Comparable Corpora

The methods we evaluate in the experiments described later rely on a well-known strat-

egy to identify bilingual lexicons from comparable corpora [14,15,36,9,12,25,16,39].

The procedure works as follows: a word w2 in the target language is a candidate trans-

lation of w1 in the source language if the context expressions with which w2 co-occurs

tend to be translations of the context expressions with which w1 co-occurs. The basis

of the method is to find the target words that have the most similar distributions with

a given source word. The starting point of this strategy is a list of bilingual expressions

that are used to build the context vectors defining all words in both languages. This

list is usually provided by an external bilingual dictionary.

This strategy is very similar to those used to extract similar words from monolingual

corpora. It also requires a sparse matrix to compute word similarity. There are, however,

two slight differences: on the one hand, the matrix dimensions are constituted by

bilingual contexts (seed words or lexical patterns taken from a dictionary) and, on the

other, the words to be compared need to belong to two different languages. Given a

word in the source language, the most similar ones in the target language are considered

as its candidate translations.

The methods briefly described in the next subsections are based on this standard

strategy. However, they differ in two specific elements: context definition and matrix

construction.

4.1 Window and Syntax-based strategies

The experiments are performed using two different types of word contexts: both window-

based and syntax-based contexts.

The window-based technique does not perform any kind of syntactic analysis, but

simply considers some window of words as forming the context of the compared words.

We follow the method described in [36]. Texts in both languages are lemmatized and

POS tagged, and function words are removed. Window size is 2 and word order is taken

into account.

The syntactic strategy relies on dependency-based partial parsing. Dependencies

are generated by means of DepPattern1, a rule-based partial parser which can process

5 languages: English, Spanish, Galician, Portuguese, and French. To extract syntax-

based contexts from dependencies, we used the co-compositional methodology defined

in [19], which was inspired by Pustejovsky [35]. Co-compositionality is defined as fol-

lowing: Two words related by a syntactic dependency are mutually constrained and

impose linguistic requirements on each other. In particular, we consider that in a Head-

Dependent syntactic dependency, not only the Head imposes constraints on the De-

pendent, but the latter also imposes linguistic requirements on the Head in return. The

DepPattern toolkit also includes a script aimed to extract co-compositional contexts

from the dependencies generated by the parser.

1 DepPattern is a linguistic toolkit, with GPL licence, which is available at:
http://gramatica.usc.es/pln/tools/deppattern.html



11

4.2 Different Ways of Building Co-occurrence Matrices

In our experiments, we evaluate the performance of several different types of co-

occurrence matrices (see Figure 1). First, we call baseline the simplest method that

takes as input a sparse matrix containing word-by-context raw co-occurrences. No fur-

ther operation was applied on the baseline matrix before computing word similarity.

Then, some association measures, namely log-likelihood (log) and two entropy-based

coefficients (entropyLSA and entropyRapp), are applied on the baseline matrix turning

simple co-occurrences into weighted values. Our interpretation of the formula of the

original entropy-based coefficient [27], where it is given only in textual form, is the

following. The entropy H of a word is:

H(word) = −
nX
i

pilog2pi (1)

where n is the number of contexts, and probability pi is:

pi =
freq of word in contexti

freq of word
(2)

Given that the formula is described in the cited article as ”ln (1+cell frequency)/entropy

of the word over all contexts”, the weight assigned to each cell (whose value is ’freq of

word in context’) is computed as:

WeightLSA =
ln(1 + (freq of word in context))

H(word)
(3)

Rapp [38] proposed to multiply the local weight and word entropy instead of di-

viding it, claiming that the results become better from this. Hence, entropyRapp is the

following formula:

WeightRapp = ln(1 + (freq of word in context))×H(word) (4)

On the basis of these three weighted matrices, we define four reduced matrices:

three generated by SVD reduction (svdLSA, svdRapp, and svdLog) and one built with

a different filtering-based strategy (filter). The filtering method was defined in [5], and

consists of the following tasks: the input matrix, which contains log-likelihood values

is ranked by decreasing significance. Then, only the N best ones are selected (where

N = 200 in our experiments). This way, each word is associated, at most, with 200 non-

zero weighted values. Given that corpus frequency follows the power-law distribution,

only very frequent words co-occur with more than 200 other words. Even if such a

filtering strategy only affects very frequent words, it allows us to reduce the number of

pairwise comparisons (and thus runtime) significantly, while hopefully not deacreasing

accuracy. As it turns out, it even increases accuracy, though insignificantly.

The 8 types of matrices shown in Figure 1 are organized in a hierarchical tree

with three levels of complexity. At the top node, we find baseline matrix. Then, at the

second level, entropyLSA, entropyRapp, and log are weighted matrices that directly

depends on baseline. Their values are the result of three different association measures,

but no reduction is applied: they still contain the same number of objects as baseline.

Finally, at the third level, svdLSA, svdRapp, and svdLog are the result of two different

reduction operations (SVD and filtering) on the weighted matrices.



12

log

svdRapp filtersvdLogsvdLSA

[entropyLSA] [entropyRapp]

baseline

Fig. 1 Tree organization of 4 types of matrices

Two of these matrices, entropyLSA and entropyRapp, which are noted with brackets

in the figure, will not be directly evaluated. They are only used to build SVD reduced

matrices. The extraction methods we will evaluate are based on the 6 remaining ma-

trices.

If we combine the 6 evaluable matrices with the two types of contexts defined above,

we will be able to evaluate 12 different methods to extract translation equivalents,

differing only in two elements, namely the type of context and the type of input matrix.

This allows us to easily compare the performance of SVD-based methods with regard to

other slightly different strategies. The 12 methods are noted and described as follows:

W-baseline: window-based contexts and raw co-occurrences,

W-log: window-based contexts and log-likelihood values,

W-svdLSA: window-based contexts, entropy-based weight as described in formula 3,

and svd reduced matrix,

W-svdRapp: window-based contexts, entropy-based weight as described in formula 4,

and svd reduced matrix,

W-svdLog: window-based contexts, loglikelihood weight, and svd reduced matrix,

W-filter: window-based contexts and filtered matrix as described in [5],

S-baseline: syntax-based contexts and raw co-occurrences,

S-log: syntax-based contexts and log-likelihood values,

S-svdLSA: syntax-based contexts, entropy-based weight as described in formula 3,

and svd reduced matrix,

S-svdRapp: syntax-based contexts, entropy-based weight as described in formula 4,

and svd reduced matrix,

S-svdLog: syntax-based contexts, loglikelihood weight, and svd reduced matrix,

S-filter: syntax-based contexts and filtered matrix as described in [5]

Notations such as W-svd and S-svd will also be used when either the distinction among

diferent SVD-based methods is not relevant or one of them is taken as our by-default

SVD strategy.

The other main parameters are not modified: we use the same training corpus and

the same type of similarity (second-order). However, it is still possible to compare the

behaviour of each one of these 12 methods considering different similarity measures. Fi-

nally, we use the Scheffé test to measure which groups of matrix-measure combinations

differ statistically significantly from each other.



13

4.3 Ten Similarity Measures

Each method will be tested against 10 similarity coefficients (see Table 6). Some of them

transform all vectors into binary values: binary Baseline (Base), binary Dice (DiceBin),

binary Jaccard (JaccardBin), and binary Cosine (CosineBin). By contrast, Cosine, Eu-

clidian distance (Eucl), City-Block (City), Dice (DiceMin), and Jaccard (JaccardMin)

use vectors with co-occurrence (or weighted) values. These different similarity metrics

between two words, w1 and w2, are defined in Table 6, where BIN(w1) stands for a

set representation of the binary vector defining word w1. This vector is the result of

transforming the real-valued vector with co-occurrences or log-likelihood scores into a

vector with binary values. The length ‖ BIN(w1) ‖ of a binary vector BIN(w1) is the

number of non-zero values.

On the other hand, A(w1, cj) is an association value of a vector of length n, with

j, i, and k ranging from 1 to n. In our experiments, the association value stands for

either the simple co-occurrences of word w1 with a contextual seed expression cj , or

the weight computed using the log-likelihood ratio between the word and its context.

For Cosine, the association values of two words with the same context are joined

using their product, while for JaccardMin [21,26] and DiceMin [10,46,16] only the

smallest association weight is considered. For the Lin coefficient, the association values

of common contexts are summed [30], where cj ∈ C1,2 if and only if A(w1, cj) > 0 and

A(w2, cj) > 0. Finally, in City, |x − y| represents an absolute value. In sum, we use

two types of similarity coefficients: those based on binary vectors and those relying on

association values.

5 Experiments and Large-Scale Evaluation

5.1 Corpora and Dictionaries

The experiments were performed on two comparable corpora. First, a Spanish and

Galician comparable corpus comprised of news from on-line journals published between

2005 and 2006. As the Spanish corpus, we used 10 million words of two newspapers:

La Voz de Galicia and El Correo Gallego, and as Galician corpus 10 million words

from Galicia-Hoxe, Vieiros and A Nosa Terra. In sum the bilingual corpus consists of

2× 10 million words. The second comparable corpus has the same size and consists of

English and Galician texts. The Galician part is the same as in the previous corpus,

while the English part consists of news from Reuters published in 2006. The Galician,

Spanish, and English texts were lemmatized and POS tagged using a multilingual free

software: Freeling [8]. Since the orientation of the newspapers is quite similar, the three

monolingual texts can be considered as more or less comparable.

The bilingual dictionaries used to select the seed words required by the acquisition

algorithm are the lexical resources integrated in OpenTrad, an open source machine

translation system for Spanish-Galician and English-Galician [1]. The Spanish-Galician

dictionary contains about 25, 000 entries, and the English-Galician about 12.000.



14

Table 6 10 similarity measures

Base(w1, w2) = ‖ BIN(w1) ∩ BIN(w2) ‖

DiceBin(w1, w2) =
2 ‖ BIN(w1) ∩ BIN(w2) ‖
‖ BIN(w1) ‖ + ‖ BIN(w2) ‖

JaccardBin(w1, w2) =
‖ BIN(w1) ∩ BIN(w2) ‖
‖ BIN(w1) ∪ BIN(w2) ‖

CosineBin(w1, w2) =
‖ BIN(w1) ∩ BIN(w2) ‖p
‖ BIN(w1) ‖

p
‖ BIN(w2) ‖

City(w1, w2) =
X

j

|A(w1, cj)− A(w2, cj)|

Eucl(w1, w2) =

sX
j

(A(w1, cj)− A(w2, cj))2

Cosine(w1, w2) =

X
j

A(w1, cj)A(w2, cj)sX
j

(A(w1, cj))
2

sX
k

(A(w2, ck))2

DiceMin(w1, w2) =

2
X

j

min(A(w1, cj), A(w2, cj))X
j

A(w1, cj) +
X

k

A(w2, ck)

JaccardMin(w1, w2) =

X
j

min(A(w1, cj), A(w2, cj))X
j

max(A(w1, cj), A(w2, cj))

Lin(w1, w2) =

X
ci∈C1,2

(A(w1, cj) + A(w2, cj))

X
j

A(w1, cj) +
X

k

A(w2, ck)

5.2 Comparing Computational Efficiency

The basic word space we built from the Spanish-Galician comparable corpora and

the syntax-based approach gave rise to a 17, 000 words by 13, 000 contexts sparse co-

occurrence matrix. The 17, 000 most frequent Spanish and Galician nouns (8, 000 and

7, 000, respectively) are treated as targets, that is, they are the objects of the matrix.

The top 13, 000 bilingual syntactic patterns are treated as word contexts (i.e., the

matrix dimensions).

The window-based approach gave rise to a larger 17, 000-by-16, 000 matrix, where

the target nouns are the same as in the syntactic space. Contexts are the 16, 000 most

frequent nouns, adjectives, verbs, and adverbs. In both cases, words were previously

lemmatized and tagged. We did not work with larger matrices so as to allow the SVD

software to be applied without running into RAM memory restrictions. Using SVD, we



15

Table 7 Hash tables size obtained from different methods

baseline/log filter svd(300)

Window 4, 629, 609 1, 840, 174 5, 303, 700
Syntax 2, 496, 888 1, 901, 600 5, 275, 200

created two reduced matrices with 1000 and 300 dimensions. Dimensionality reduction

was performed with SVDLIBC2.

To compute word similarity, the input data contained in those matrices is stored in

hash tables only containing non-zero values. This is necessary, because the optimiza-

tions of our similarity computation program are based on the usage of hash tables.

As we expected, the largest hash tables correspond to the dense matrices produced by

SVD (see Table 7). For instance, the S-svd(300) method (i.e., syntax-based contexts

and SVD-reduced matrix with 300 dimensions) yielded a table with 5, 275, 200 non-

zero entries. Note the three different SVD-reduced matrices (svdLSA, svdRapp, and

svdLog) have the same size. By contrast, the S-baseline and S-log methods (without

any matrix reduction) have 2, 496, 888 non-zero entries. The smallest table was built

with the S-filter algorithm, with merely 1, 901, 600 values.

As far as runtime is concerned, the slowest process was run with the W-svd word

space (i.e., window-based contexts and SVD-reduced matrix). The process of computing

similarity took 115h10min, using a 2.33GHz CPU. By contrast, the same process with

the W-baseline space took 3 times less time: 35h45min. And with W-filter, less than 24

hours. Notice that this includes only the time required by the final similarity process.

Dimensionality factorization by SVD was not taken into account. To compute word

similarity with baseline and filter, we applied the efficient heuristic described in Section

2, that is, we selected only those pairwise nouns sharing at least one context. This

heuristic can not be applied to SVD-based matrices.

In sum, concerning storage and runtime, the methods based on SVD seem to be

less efficient than baseline strategies by quite a large margin.

5.3 Qualitative Evaluation

5.3.1 Protocol

To evaluate the quality of all tested extraction methods for translation equivalents, we

elaborated an automatic and large-scale evaluation protocol with the following charac-

teristics. As far as the Spanish-Galician corpus is concerned, the test list conceived as

gold standard contains about 14, 000 bilingual nominal entries. The English-Galician

test list consists of 3, 300 nominal entries. Each test list is the result of selecting all

words that appear in both the bilingual dictionary and the corpus. Precision is the

number of correct translations proposed by the system, divided by the number of

nouns appearing in the test list and for which the system has proposed a translation.

Given a Spanish target word, for instance, a translation is considered as correct only if

the correct Galician candidate was ranked among the top-10 most similar words to the

target. Recall is the number of correct translations divided by the number of nouns in

the test list. Finally, f-score is the harmonic mean of precision and recall.

2 http://tedlab.mit.edu/~dr/svdlibc/



16

This evaluation protocol is provided with three positive properties: First, unlike

evaluation tests based on small lists of words (e.g., TOEFL), our evaluation makes

use of a big list of thousands of test nouns as gold standard. This makes it sound and

reliable. Second, unlike the TOEFL or ESL test questions, the list of synonym candi-

dates is not restricted to a small word set. Hence, the baseline of randomly choosing

possible words is close to 0%. Third, as finding word translations is akin to identifying

strong and well defined synonymy relations between two words (the source word and

its translation), our evaluation has the positive aspect of those controlled tests, such

as TOEFL, containing non-ambiguous questions elaborated by humans for a specific

task. By contrast, other tests relying on general lexical resources such as WordNet are

not suited to evaluate well-defined word synonymy.

Furthermore, we test the results with the Scheffé test, an anova post-hoc test [13]

comparing the means (of the F-scores) of the various windowing and measure combi-

nations (briefly called algorithms). This test checks all possible groupings of results for

whether they do differ significantly or not, with a confidence interval of 99% (i.e. an

error probability of less than 1%). Since this is considered to be a conservative signifi-

cance test, differences found by it are with a very high probability not due to chance.

However, this test might fail to find a difference in the performance of two algorithms

which does not exclude the possibility of such a difference with more test samples or

under different conditions.

We also measure correlation coefficients to obtain information about whether two

algorithms perform well on the same words or not. If two algorithms would perform

well on two mostly distinct sets of words, they could be combined to boost the overall

performance.

5.3.2 Results of the Spanish-Galician Corpus

Before comparing all methods, we first evaluated the performance of the different SVD-

based strategies. Table 8 depicts the F-scores of 6 methods with SVD reduction (300

dimensions) over the Spanish-Galician corpus. In particular, we compare the use of SVD

with two types of contexts (syntax and window based) and three association measures:

loglikelihood (Log), the entropy-based transformation proposed by LSA (equation 3),

and the entropy-based version by Rapp (equation 4).

Table 8 Spanish-Galician comparable corpus. F-score (in %) of different svd-based methods
(300 dimensions)

Measures S-svd S-svd S-svd W-svd W-svd W-svd
LSA Rapp Log LSA Rapp Log

City 6.32 5.92 8.75 7.52 5.93 1.03
Cosine 17.54 23.39 17.17 20.79 25.23 1.01
Euclidean 5.15 5.89 7.63 7.77 6.48 0.86

The results in Table 8 show that the best scores are those performed using the

entropy-based formula defined by Reinhard Rapp. In particular, Rapp’s formula gives

good similarity estimates with cosine and window-based contexts. This is in accordance

with the results depicted above in Table 5, where the window-based method combined



17

with Rapp’s equation yielded the best results on the TOEFL test. In the following, sv-

dRapp will be taken as our by-default SVD strategy. Notice that non-binary measures,

namely City-Block, Cosine, and Euclidean are the only meaningful coefficients applica-

ble to the dense matrices generated wit SVD. This is due to the fact that the reduced

matrix consists of words sharing all high-dimensional contexts. In boolean terms, ev-

ery word-context association is assigned value 1. So, the results obtained with binary

metrics over SVD-reduced matrices are the same as any random technique: close to 0.

In the next experiments, we compare all possible combinations among methods and

similarity measures described above in Section 4. Tables 9 and 10 show the F-scores

obtained using respectively the windowing technique and the syntax-based strategy

over the Spanish-Galician comparable corpus. The columns of each table represent

the methods described in 4.2: W-baseline, W-log, W-filter, W-svd in Table 9, and S-

baseline, S-log, S-filter, S-svd in Table 10. Rows represent the 10 similarity coefficients

introduced above in 4.3. The SVD-based methods evaluated in these tables are our

by-default strategies, namely S-svdRapp and W-svdRapp.

The evaluation shows that the SVD-based strategies (with either 300 or 1000 re-

duced dimensions) perform much worse than the other three methods (baseline, log,

and filter), which, in fact, do not differ much from each other. We could observe a

direct positive relationship between continually raising the number of dimensions and

extraction quality without the peak at around 300 dimensions as reported by some of

the previously cited researchers. According to proponents of LSA, ”it is clear that there

is a strong nonmonotonic relation between number of LSA dimensions and accuracy of

simulation, with several hundred dimensions (300) needed for maximum performance,

but still a small fraction of the dimensionality of the raw data” [27]. By contrast, our

experiments show the relation between LSA dimensions and accuracy is monotonic:

the more dimensions the matrix contains the higher the accuracy of extraction. The

use of 300 and 1000 dimensions in the reported experiments allows us to visualize the

linear improvement of performance: the peak is reached by the original non-reduced

matrix with 16000 dimensions.

When analyzing the differences between the algorithms we both compute the Pear-

son correlation coefficient (see Table 11 for a selected number of coefficients) and a

simple count statistic. For example, Cosine with S-svd finds the correct translation for

3316 target words whereas DiceMin with S-filter algorithm is correct for 7350 words.

But there are only 65 cases where the S-svd method found the correct translation for

which S-filter did not find the correct translation. In other words, the correct results

of the SVD based method differ only by less than 2% from the other methods. The

entire matrix of Pearson coefficients and simple count statistics between all algorithms

exhibits the same behavior. That is, if algorithms are very distinct in their perfor-

mance, then the worse of the two compared algorithms barely has correct translations

where the better has not correct translations. It follows that the algorithms are not

complementary. This is unfortunate because it means that their combination will not

produce any gain in performance.

The results of both S-svd and W-svd cannot be compared with other related work

on translation equivalents extraction, since as far as we know SVD has not been used

for this specific purpose. On the other hand, we can observe that the syntax-based

methods improve the results obtained by the windowing techniques slightly (except if

we compare S-svd against W-svd). The same was observed in recent work [17]. However,

the differences between the two methods are not statistically significant.



18

Table 9 Spanish-Galician comparable corpus. F-score (in %) of window-based methods and
10 similarity measures

Measures W-baseline W-log W-filter W-svd(1000) W-svd(300)

Base 0.66 0.66 43.25
City 0.63 0.58 0.58 5.22 5.93
CosineBin 43.18 43.18 48.82
Cosine 11.26 10.84 11.22 25.53 25.23
DiceBin 48.49 48.49 48.82
DiceMin 33.88 26.79 26.21
euclidean 2.63 2.35 2.29 7.16 6.48
JaccardBin 48.49 48.49 48.82
JaccardMin 33.88 26.79 26.22
Lin 7.62 6.35 8.20

Table 10 Spanish-Galician comparable corpus. F-score (in %) of syntax-based methods and
10 similarity measures

Measures S-baseline S-log S-filter S-svd(1000) S-svd(300)

Base 5.26 5.26 40.72
City 1.73 1.75 4.51 5.60 5.92
CosineBin 48.62 48.62 48.99
Cosine 39.92 42.45 42.57 30.02 23.39
DiceBin 48.15 48.15 48.71
DiceMin 47.61 50.25 50.22
Euclidean 6.22 6.21 18.34 5.91 5.89
JaccardBin 48.15 48.15 48.71
JaccardMin 47.61 50.25 50.22
Lin 40.89 40.11 40.64

Table 11 Pearson Coefficient for a selected number of algorithms

S-Filter S-Filter S-Log S-svd(1000) W-Filter
DiceMin JaccardMax Cosine Cosine JaccardBin

S-Filter DiceMin 1 1,00 0,77 0,47 0,70
S-Filter JaccardMin 1,00 1 0,77 0,47 0,70
S-Log Cosine 0,77 0,77 1 0,53 0,60
S-svd(1000) Cosine 0,47 0,47 0,53 1 0,40
W-Filter JaccardBin 0,70 0,70 0,60 0,40 1

The statistical significance tests reveal that with a significance of 0.973 (below

0.01 would be insignificant) there is a large group of algorithms that do not differ

significantly from each other, marked with bold face in the tables. But they all perform

significantly better than the rest of the algorithms (which also form groups, but are of

less interest). This is in accordance with findings in related literature [4] where precisely

the combination of the baseline approach with binary measures performed best.

In sum, these results show that it is not easy to overcome the two baseline strategies:

both W-baseline and S-baseline. Even if (WS)-filter and (WS)-log perform slightly

better than the baseline, differences are actually very small. So, to compute word

similarity, the simple co-occurrence sparse matrix represented as a hash table with

non-zero values and an appropriate similarity measure behaves, at least, as good as

other more elaborated methods.



19

Table 12 English-Galician Comparable corpus. F-score (in %) of three syntax-based methods
and 10 similarity measures

Measures S-baseline S-filter S-svd(300)

Base 1.25 22.54
City 0.43 0.43 1.09
CosineBin 11.37 21.50
Cosine 11.38 8.57 2.93
DiceBin 18.89 22.19
DiceMin 22.80 17.55
Euclidean 1.61 1.21 1.66
JaccardBin 18.89 22.19
JaccardMin 22.80 17.55
Lin 15.08 10.61

Besides the general comments made so far, results depicted in tables 9 and 10 also

let us observe the following phenomena:

As it was expected, binary metrics yieldied the same results with both baseline and

log matrices. These two matrices are indeed identical if they are represented in boolean

terms.

Among the non-binary metrics, the coefficient providing the best results using the

SVD-reduced matrix is Cosine. However, in this context Cosine metric behaves bet-

ter with the other approaches: baseline, log, and filter. Besides, City and Euclidean

tend to behave better with both S-svd and W-svd than with the other three methods.

This means that City and Euclidean are not suited at all to deal with sparse matri-

ces. Concerning the remaining non-binary measures (DiceMin, JaccardMin, and Lin),

their application to SVD-reduced matrix is not meaningful, since they only distinguish

between shared and not shared word contexts.

It is worth noting that Jaccard and Dice metrics are equivalent. They provide the

same scores in 7 out of 8 methods (there is only a small difference within W-filter). This

is in accordance with the fact that Jaccard and Dice coefficients should always yield the

same similarity rankings for any word [4]. Hereafter, we’ll use the term “Dice-Jaccard”.

Tables 9 and 10 also show that each method has its preferred similarity measure.

The favorite coefficient for S-log and S-filter is Dice-JaccardMin, which achieves the

best scores (50.25% and 50.22%, respectively) of all experiments. For the windowing

techniques without SVD, i.e., W-log, W-filter, and W-baseline, the best measures are

the binary ones, namely CosineBin and Dice-JaccardBin. Concerning the SVD-based

methods, Cosine achieved the highest scores with both W-svd(1000) (25.53%) and s-

svd(1000) (30.02%). Finally, Euclidean seems to be slightly better that City, which

turned out to be the worst metric in our experiments. However, it is City-Block the

only metric that improves results using SVD-based methods, that is, it performs better

with dense matrices.

These results are in accordance with those obtained in [18] where analogous large-

scale experiments were performed to acquire word similarity from a monolingual corpus.

5.3.3 Results of the English-Galician Corpus

Table 12 shows the F-scores obtained using the syntax-based strategy and three types

of matrices (baseline, filter, and svd(300)) over the English-Galician comparable cor-

pus. Results are analogous to those obtained in the previous syntax-based experiment:



20

the best coefficients are Dice-JaccardMin, but there are no significant differences with

regard to binary measures. Concerning SVD dense matrices, Cosine is the best coef-

ficient, even if its score is still far from the results achieved with sparse matrices. By

contrast, the behaviour of City-Block and Euclidean is better with SVD dense matrices

than with the sparse ones (baseline and filter).

Notice that F-scores are much worse than in the previous experiments. There are,

at least, two reasons: First, the language pair Spanish-Galician is more closely related

than English-Galician. Second, the English-Galician dictionary used to built the list of

seed words is much smaller.

5.3.4 Corpus Partition

�

��

��

��

��

��

��

������	
��
� �������	
 ��������	


}���������

�
�	


�
�
� ��������
�

��������

����������

Fig. 2 F-Score of S-baseline, S-filter, and S-svd over 3 corpus partitions

Figure 2 additionally depicts how or whether three syntactic-based methods (S-

baseline, S-filter, and S-svd(300)) benefit from a larger corpus with sizes from 100, 000

to 10 million word tokens, taken from the Spanish-Galician corpus (the same described

above in subsection 5.1). Figure 2 only shows one similarity score (the best one) by

method: Dice-JaccardBin with S-baseline, Dice-JaccardMin with S-filter, and Cosine

with S-svd. Notice that S-svd starts with the best score, but it improves very slowly

as the corpus grows. This seems to mean that SVD-based strategy works well on small

corpora but the precision gain with larger input is actually very poor compared to the

other two approaches. This could explain some of the optimistic findings reported in

the literature (see introduction above).

One possible reason is the following: a small corpus provides very few direct context-

word co-occurrences, which are the only source of information required by S-baseline

and S-filter. By constrast, the amount of information available for S-svd is consid-

erably larger since it uses factor analysis and multi-dimensional scaling to generate

more abstract word spaces with higher-order co-occurrences. So, SVD-methods work

slightly better with small corpora because they are able to capture more information



21

before computing word similarity. As the corpus size grows, the number of direct co-

occurrences also grows, and then the source of information required by S-baseline and

S-filter becomes more reliable for similarity extraction. By contrast, such a reliable

information (only direct co-occurrences) is transformed by SVD into an abstract word

space with latent information that becomes hard to interpret, not only by humans but

also by the most straightforward similarity coefficients.

5.3.5 Third-Or-More-Order Similarities

As it has been said above, SVD-methods should theoretically be able to find not only

second-order similarity but also higher-order relatedness. A high-order similarity is

based on comparing words that do not co-occur in the corpus with the same words

(or lexical-syntactic contexts) but with words that can be related to the two compared

words through further indirect co-occurrences. Using the smallest corpus size, we found

that almost 10% (31 out of 338) correct translations proposed by the S-svd strategy

are bilingual pairs of words that did not co-occur in the corpus with any common

context. This means that the generalization performed by SVD does indeed find some

latent semantics since it enables finding third-or-more-order similarities. However, the

benefits of such a gain come at a dramatic decrease in precision in larger corpora (from

50.22% precision with the S-filter algorithm to 30.02% precision with S-svd) of second-

order similarity, whose contribution for the overall similarity is crucial. Additionally,

using the same simple baseline comparison methods to compare words based on their

similar words (instead of their co-occurrences) would also yield higher-order relatedness

as shown in [3].

6 Conclusions

While the main goal was to find the best method that computes translations, one of

the main contributions of this paper is to compare SVD-methods with other models

under controlled circumstances by means of a large-scale evaluation, and by taking a

large bilingual dictionary as gold standard.

The results of the experiments leave no doubt that at least for the task of extracting

translation equivalents from comparable corpora, SVD-based methods are both com-

putationally more costly and effectively less precise in their results. On the one hand,

given that the sparse matrix reduced with SVD produces more non-zero values than

those contained in the original matrix, SVD-methods turn out to compute similarity

in a much more time-consuming manner than baseline strategies. On the other hand,

latent semantic information as a result of factorization by SVD, such as high-order

co-occurrences, does not help to improve the task of extracting candidate translations.

Especially for larger corpora, the precision gain is far less than expected if compared

with baseline strategies.

It is also clear that the arguments about computational efficiency can be transferred

to all other tasks involving any kind of SVD procedure. While it is not as clear whether

the poor precision values would also be observed in other tasks, such as LSA or plain

similar word computations, these experiments at least give a strong hypothesis about

how SVD-based methods compare with baseline methods there.

However, it is also obvious that the results reported are not fully conclusive. In

order to reach a more reliable degree of certainty, it is required to perform further tests



22

with both monolingual and bilingual copora. Nevertheless, the results reported in this

paper provide evidence for the following statement: In the normal vector space where

initially words constitute dimensions it is really difficult to overcome baseline methods

to extract semantic information. There is no evidence yet that elaborate extracting

techniques, such as those relying on SVD, are better than those based on the original

co-occurrence matrix and boolean similarity coefficients.

Acknowledgements This work has been supported by the Galician Government (projects
with reference: PGIDIT07PXIB204015PR and 2008/101), and by the Natural Language En-
gineering Department at the University of Leipzig.

References

1. Carme Armentano-Oller, Rafael C. Carrasco, Antonio M. Corb́ı-Bellot, Mikel L. For-
cada, Mireia Ginest́ı-Rosell, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema Ramı́rez-
Sánchez, Felipe Sánchez-Mart́ınez, and Miriam A. Scalco. Open-source Portuguese-Spanish
machine translation. In Lecture Notes in Computer Science, 3960, pages 50–59, 2006.

2. Marco Baroni and Alessandro Lenci. Concepts and Properties in Word Space. Italian
Journal of Linguistics, 20(1), 2008.

3. C. Biemann, S. Bordag, and U. Quasthoff. Automatic Acquisition of Paradigmatic Rela-
tions using Iterated Co-occurrences. In LREC2004, Lisbon, Portugal, 2004.

4. Stefan Bordag. Elements of Knowledge-free and Unsupervised Lexicon Acquisition. PhD
thesis, University of Leipzig, 2007.

5. Stefan Bordag. A Comparison of Co-occurrence and Similarity Measures as Simulations
of Context. In 9th CICLing, pages 52–63, 2008.

6. R. Bradford. An Empirical Study of Required Dimensionality for Large-scale Latent Se-
mantic Indexing Applications. In 17th ACM Conference on Information and Knowledge
Management, pages 153–162, Napa Valley, California, 2008.

7. R. Budiu and P. Pirolli. Navigation in degree-of-interest trees. In Advance Visual Interface
Conference, 2006.

8. X. Carreras, I. Chao, L. Padró, and M. Padró. An Open-Source Suite of Language Analyz-
ers. In 4th International Conference on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal, 2004.

9. Y-C. Chiao and P. Zweigenbaum. Looking for candidate translational equivalents in spe-
cialized, comparable corpora. In 19th COLING’02, 2002.

10. James R. Curran and Marc Moens. Improvements in Automatic Thesaurus Extraction.
In ACL Workshop on Unsupervised Lexical Acquisition, pages 59–66, Philadelphia, 2002.

11. S. Deerwester, S.T. Dumais, G.W. Furmas, T.K. Landauer, and R. Harshman. Indexing
by Latent Semantic Analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

12. H. Dejean, E. Gaussier, and F. Sadat. Bilingual terminology extraction: an approach based
on a multilingual thesaurus applicable to comparable corpora. In COLING 2002, Tapei,
Taiwan, 2002.

13. George A. Ferguson and Yoshio Takane. Statistical Analysis in Psychology and Education.
McGraw-Hill Ryerson Limited, Montreal, Quebec, 2005.

14. Pascale Fung and Kathleen McKeown. Finding terminology translation from non-parallel
corpora. In 5th Annual Workshop on Very Large Corpora, pages 192–202, Hong Kong,
1997.

15. Pascale Fung and Lo Yuen Yee. An IR Approach for Translating New Words from Non-
parallel, Comparable Texts. In Coling’98, pages 414–420, Montreal, Canada, 1998.

16. Pablo Gamallo. Learning Bilingual Lexicons from Comparable English and Spanish Cor-
pora. In Machine Translation SUMMIT XI, Copenhagen, Denmark, 2007.

17. Pablo Gamallo. Evaluating Two Different Methods for the Task of Extracting Bilingual
Lexicons from Comparable Corpora. In LREC 2008 Workshop on Comparable Corpora,
pages 19–26, Marrakech, Marroco, 2008.

18. Pablo Gamallo. Comparing different properties involved in word similarity extraction. In
14th Portuguese Conference on Artificial Intelligence (EPIA’09), LNCS, Vol. 5816, pages
634–645, Aveiro, Portugal, 2009. Springer-Verlag.



23

19. Pablo Gamallo, Alexandre Agustini, and Gabriel Lopes. Clustering Syntactic Positions
with Similar Semantic Requirements. Computational Linguistics, 31(1):107–146, 2005.

20. Genevieve Gorrel. Generalized Hebbian Algorithm for Incremental Singular Value Decom-
position in Natural Language Processing. In EACL 2005, 2005.

21. Gregory Grefenstette. Explorations in Automatic Thesaurus Discovery. Kluwer Academic
Publishers, USA, 1994.

22. Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development in information
retrieval, pages 50–57, Berkeley, California, 1999.

23. Thomas Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis.
Machine Learning, 42(1-2):177–196, 2001.

24. Michael P. Holmes, Alexander G. Gray, and Charles Lee Isbell Jr. QUIC-SVD: Fast SVD
Using Cosine Trees. In NIPS-2008, pages 673–680, 2008.

25. Hiroyuki Kaji. Extracting Translation Equivalents from Bilingual Comparable Corpora.
In IEICE Transactions 88-D(2), pages 313–323, 2005.

26. Hiroyuki Kaji and Toshiko Aizono. Extracting Word Correspondences from Bilingual
Corpora Based on Word Co-occurrence Information. In 16th Conference on Computational
Linguistics (Coling’96), pages 23–28, Copenhagen, Danmark, 1996.

27. T.K. Landauer and S.T. Dumais. A solution to Plato’s problem: The Latent Semantic
Analysis theory of acquision, induction and representation of knowledge. Psychological
Review, 10(2):211–240, 1997.

28. B. Lemaire and G. Denhière. Effects of High-Order Co-occurrences on Word Semantic
Similarity. Current Psychology Letters, 18(1), 2006.

29. Esther Levin, Mehrbod Sharifi, and Jerry T. Ball. Evaluation of Utility of LSA for Word
Sense Discrimination. In HLT-NAACL, 2006.

30. Dekang Lin. Automatic Retrieval and Clustering of Similar Words. In COLING-ACL’98,
Montreal, 1998.

31. Hiroshi Masuichi, Raymond Flournoy, Stefan Kaufmann, , and Stanley Peters. Query
translation method for cross language information retrieval. In Proceedings of the Work-
shop on Machine Translation for Cross Language Information Retrieval, MT Summit
VII, pages 30–34, Singapore, 1999.

32. I. Matveeva, G. Levow, A. Farahat, and C. Royer. Terms representation with generalized
latent semantic analysis. In RANLP-2005, 2005.

33. T. Pedersen and A. Kulkarni. Discovering Identities in Web Contexts with Unsupervised
Clustering. In IJCAI-2007 Workshop on Analytics for Noisy Unstructured Text Data,
pages 23–30, Hyderabad, India, 2007.

34. R. Price and A. Zukas. Application of latent semantic indexing to processing of noisy
text,. In Intelligence and Security Informatics, LNCS 3495, pages 602–603, 2005.

35. James Pustejovsky. The Generative Lexicon. MIT Press, Cambridge, 1995.
36. Reinhard Rapp. Automatic Identification of Word Translations from Unrelated English

and German Corpora. In ACL’99, pages 519–526, 1999.
37. Reinhard Rapp. Word sense discovery based on sense descriptor dissimilarity. In 9th

Machine Translation Summit, 2003.
38. Reinhard Rapp. A freely available automatically generated thesaurus of related words. In

LREC-2004, pages 395–398, Lisbon, Portugal, 2004.
39. X. Saralegui, I. San Vicente, and A. Gurrutxaga. Automatic generation of bilingual lexi-

cons from comparable corpora in a popular science domain. In LREC 2008 Workshop on
Building and Using Comparable Corpora, 2008.

40. Hinrich Schütze. Dimensions of meaning. In Proceedings of Supercomputing-92, pages
787–796, Minneapolis, MN, 1992.

41. Hinrich Schütze. Ambiguity resolution in langugage learning. In CSLI Publications, Stand-
ford, CA, 1997.

42. Hinrich Schütze. Automatic Word Sense Discrimination. Computational Linguistics,
24(1):97–124, 1998.

43. E. Terra and C.L. Clarke. Frequency estimates for statistical word similarity measures.
In Conference of the North American Chapter of the Association for Computational Lin-
guistics on Human Language Technology (NAACL’03), pages 165–172, NJ, USA, 2003.

44. P. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In 12th
European Conference of Machine Learning, pages 491–502, 2001.



24

45. Yinghui Xu Kyoji Umemura. Very low-dimensional latent semantic indexing for local query
regions. In Annual Meeting of the ACL archive Proceedings of the sixth international
workshop on Information retrieval with Asian languages, pages 84–91, Saporo, Japan,
2003.

46. Lonneke van der Plas and Gosse Bouma. Syntactic Contexts for Finding Semantically
Related Words. In Meeting of Computational Linguistics in the Netherlands (CLIN2004),
2004.

47. Jinqiao Wang, Lingyu Duan, Lei Xu, Hanqing Lu, and Jesse S. Jin. TV a,d video catego-
rization with probabilistic latent concept learning. In Workshop on multimedia informa-
tion retrieval, pages 24–29, Augsburg, Bavaria, Germany, 2007.

48. P. Wiemer-Hastings, K. Wiemer-Hastings, and A. Graesser. Improving an intelligent tu-
tor’s comprehension of students with Latent Semantic Analysis. In S. Lajoie and M. Vivet,
editors, Artificial Intelligence in Education, pages 535–542, Amsterdam, 1999. IOS Press.

49. Yueting Zhuang, Weiming Lu, and Jiangqin Wu. Latent Style Model: Discovering writing
styles for calligraphy works. Journal of Visual Communication and Image Representation,
20(2):84–96, 2009.


