
A grammatical formalism based on patterns of Part of Speech tags

Pablo Gamallo Otero and Isaac González López

University of Santiago de Compostela

Abstract

In this paper, we describe a grammatical formalism, called DepPattern, to write

dependency grammars using patterns of Part of Speech (PoS) tags augmented with

lexical and morphological information. The formalism inherits ideas from Sinclair’s

work and Pattern Grammar. To properly analyze semi-fixed idiomatic expressions,

DepPattern distinguishes between open-choice and idiomatic rules. A grammar is

defined as a set of lexical-syntactic rules at different levels of abstraction. In addition, a

compiler was implemented so as to generate deterministic and robust parsers from

DepPattern grammars. These parsers identify dependencies which can be used to

improve corpus-based applications such as information extraction. At the end of this

article, we describe an experiment which evaluates the efficiency of a dependency

parser generated from a simple DepPattern grammar. In particular, we evaluated the

precision of a semantic extraction method making use of a DepPattern-based parser.

Keywords: syntax, parsing, pattern grammar, dependency grammar, information

extraction

1

1. Introduction

Within the tradition of corpus linguistics, we can find two assumptions that do not

follow the main lines of most standard linguistic approaches. On the one hand, it is

assumed that grammar and lexis cannot be separated (Sinclair 1991), that they “are one

and the same thing” (Hunston & Francis 1999:272). On the other hand, it is also

assumed that sense and structure are associated (Sinclair 1991): “There is a strong

association between meaning and pattern” (Hunston & Francis 1999:272).

Similar ideas are also clearly stated in cognitive linguistics. In particular,

Cognitive Grammar makes the two assumptions stated above, but uses its own

terminology. On the one hand, grammar is seen as a structured inventory of units that

embody the regularities discernible at varying levels of abstraction. Continuous and

discontinuous idioms, strong collocations, semi-productive rules, productive syntactic

patterns, and so on are all represented and defined in the same way, namely as units of

meaning. Hence, “lexicon, morphology, and syntax form a continuum of meaningful

structures” (Langacker 1991:3). On the other hand, it is also claimed that “grammar is

inherently meaningful” (Langacker 2003:251), and thus cannot be perceived as an

autonomous module vis-à-vis semantics.

Furthermore, dependency-based grammars also share, to a certain extent, the

same principles. Word Grammar states that there are no clear boundaries between

different areas of knowledge – e.g. between lexicon and grammar. In more conclusive

terms, Hudson claims that “the lexicon is not distinct from the grammar” (Hudson

1990). In addition, other researchers within the same framework assert that one of the

main advantages of dependencies over phrase structure representations is “closeness to

semantic representations such as predicate-argument structures” (Debusmann &

2

Kuhlmann 2010: 365). Dependency links, which form abstract syntactic structures, are

therefore directly associated with meaning.

Let’s note that three very different linguistic frameworks – corpus linguistics,

cognitive linguistics, and dependency grammars – proposed, at the end of the eighties,

the same unconventional principles. This should not be taken as a coincidence, but as

sound evidence of their reliability. However, in spite of the soundness of these two

principles, most formal grammars elaborated so far whose aims are to improve natural

language processing tools (e.g. syntactic analyzers) don’t follow such ideas. In fact, they

rely on more standard linguistic theories that assume a sharp separation between syntax

and lexicon, as well as the autonomy of syntax vis-à-vis semantics. Two significant

exceptions are Constraint Grammar (Karlsson 1990) and Lexicalized Tree Adjoining

Grammar (Abeillé et al. 1989).

Since most formal grammars are based on linguistic frameworks that do not take

into account the two principles introduced above, they have serious problems coping

with those collocations and idioms that are seen as semi-fixed lexical units made up of

several words. The importance of this type of composite expression has been largely

neglected in the development of grammatical formalisms. There are many composite

lexical units that do not necessarily appear as continuous strings in texts, that is, they are

discontinuous structures, e.g. “take NP into account,” “turn NP on,” etc. In addition,

many idioms allow for internal lexical and syntactic variation. For instance, the semi-

fixed unit “BE-NEG-in-POSS-nature” can be elaborated by a great variety of specific

expressions: is not in his nature, was hardly in your nature, is not in the nature of the

chairman, is not in Peter’s nature, etc. In fact, such a lexical unit contains at least five

words, but only two of them – in and nature – are actually fixed. The remaining words

3

have some kind of lexical and syntactic variation. In order to recognize semi-fixed

lexical units, they should be approached in a fashion similar to the way any syntactic

structure would be analyzed. It is not realistic to treat them as static and predefined

entries in the lexicon. In fact, a proper treatment of semi-fixed idioms constitutes a

serious challenge for those formal grammars and natural language systems based on

linguistic theories that conceive lexicon and syntax as being two clearly separated

modules.

In this paper, we shall describe a rule-based formalism, called DepPattern, which

is sensitive to the two principles introduced above. Its rules aim to identify

dependencies by using unlimited patterns of Part-of-Speech (PoS) tags, morphological

features, and lexical information. In addition, a set of related dependencies can produce

either a (semi)-fixed lexical unit (idiom principle), or a standard syntactic unit (open-

choice model). Thus, in DepPattern, lexis and syntax are not separated, and yet at the

same time the natural association between dependencies and semantics allows

DepPattern to be easily adapted for the task of semantic extraction. Since dependencies

are semantically motivated, many researchers on Information Extraction use syntactic

dependencies rather than constituency structures to automatically acquire word

similarity from large corpora. This explains why most work on syntactic-based semantic

extraction only makes use of word dependencies instead of phrase constituents

(Grefensttete 1994, Lin 1998, Gamallo et al. 2005).

We have implemented a DepPattern compiler which generates deterministic and

robust parsers based on regular expressions. Parsers generated from DepPattern can be

used for five languages: English, French, Spanish, Portuguese, and Galician.1 They

parse text that was previously PoS tagged by either FreeLing (Carreras et al. 2004) or

4

Tree-Tagger (Schmid 1994), and process naturally-occurring text to identify

dependencies which can be used, in turn, to extract semantically related words.

This paper is organized as follows: In the following section (Section 2), we

describe some of the linguistic ideas underlying the grammatical formalism. These ideas

have been drawn from Sinclair’s work, Pattern Grammar, and dependency-based

linguistic theories. Section 3 will then briefly sketch two related grammatical

formalisms, which also take into account the fuzzy boundaries between lexis and

syntax. Section 4 depicts a general overview of the computational architecture we have

implemented on the basis of the grammatical formalism: grammar compiler, parsers,

PoS tags converter, etc. In Section 5, we give an informal description of the main

elements of the formalism. Finally, in Section 6 a corpus-based experiment and its

evaluation are presented. The aim of the experiment is to extract lexical semantic

similarities using dependencies identified from a large English corpus. The input

dependencies were recognized by a parser compiled from a small English DepPattern

grammar.

2. Linguistic ideas underlying the formalism

To elaborate our formalism, we have taken into account ideas from different linguistic

frameworks. In particular, we borrowed basic concepts from Sinclair’s work, Pattern

Grammar, and dependency-based linguistic theories.

2.1 Open-choice model versus idiom principle

Sinclair argues that there are two different ways of interpreting language expressions.

On the one hand, the meaning of a composite expression is the result of a number of

5

open choices made according to well-defined semantic compositionality. This is called

the ‘open-choice model’, and is defined as follows (Sinclair 1991: 109-110):

It is often called a “slot-and-filler” model, envisaging texts as a series of slots

which have to be filled from a lexicon which satisfies local constraints. At each

slot, virtually any word can occur. [...] All grammars are constructed on the

open-choice principle.

On the other hand, in many cases the meaning of a composite is not compositional, that

is it cannot be derived from the meaning of its parts. These frozen and semi-fixed

structures can only be interpreted by making use of the ‘idiom principle’ (Sinclair 1991:

110), which is defined as follows:

The principle of idiom is that a language user has available to him or her a large

number of semi-preconstructed phrases that constitute single choices, even

though they might appear to be analyzable into segments.

According to Sinclair, these semi-preconstructed phrases are the general rule in

language rather than the exception. So, the idiom principle should be incorporated into

the basic organization of any (lexico-)grammar, together with the well-known open-

choice model. The principle of idiom is at least as important as the open-choice model

used to describe a particular lexico-grammar.

The problem is that semi-preconstructed phrases are much more complex to

analyze than, for example, fixed expressions such as of course or in spite of, or standard

6

syntactic units such as red car or John is sleeping. Fixed expressions are taken as

standard lexical units stored in a static lexicon, whereas syntactic constructions can be

analyzed by means of regular grammatical rules. By contrast, semi-fixed idioms, which

should be defined as non-compositional lexical units, usually have complex syntactic

properties similar to those treated by the open-choice model. For instance, many of

them do not necessarily appear as continuous strings in texts:

(1) (a) We certainly take the idea into account

(b) How do I turn the radio on for my BlackBerry?

Many others allow internal syntactic variation, for instance:

(2) (a) It is not in its nature to establish bilateral relations with the Member States

(b) It is not in the nature of politics that the best men should be elected

(c) To apologize is not in Bush’s nature

In sum, semi-preconstructed phrases inherit properties from both fixed-expressions and

“free” constructions.

To analyze such controversial expressions, the DepPattern formalism allows

linguists to define grammatical rules aimed at identifying complex lexical units. These

rules behave as standard syntactic rules, but instead of generating syntactic

constructions, they build composite lexical units that will be used as “words” in further

analyses. In fact, our formalism consists of two types of grammatical rules: both

syntactic and lexical rules. The former follow the open-choice model, while the latter

7

rely on the idiom principle.

2.2 Pattern Grammar

Pattern Grammar, such as it has been described in Hunston & Francis (1999), can be

viewed as an “implementation of Sinclair’s programme” (Teubert 2007: 230). This

framework is focused on patterns of words, which are defined as follows (Hunston &

Francis 1999: 37): “All the words and structures which are regularly associated with

that word and which contribute to its meaning”. A few examples of patterns are, for

instance:

V n n I wrote him a letter

V that We agreed that she was not to be told

V n to-inf My advisers counselled me to do nothing

N on n A decision on its German business

ADJ to-inf The print was easy to read

In the Pattern Grammar representation, v represents a verb group, n a noun

group, adj an adjective group, that a clause introduced by that, to-inf a clause

introduced by a to-infinitive form, and on a specific lexical item making up part of a

pattern. The upper-case V (or N, ADJ) indicates that this is the word-class whose

patterns we are focusing on. So, the upper-case part-of-speech represents the target

word-class, while the lower-case part-of-speech and lexical items define a meaningful

context of that word-class.

Pattern Grammar is a very interesting linguistic framework that has inspired

8

Natural Language Processing tools. One of them, described in Mason & Hunston

(2004), is aimed at automatically recognizing grammar patterns from corpora.

Patterns are syntactic surface structures allowing a description of language that

is less abstract, more lexical, and surface in orientation. To describe a pattern, Hunston

and Francis require only the names of lexical items and basic parts-of-speech (or word-

classes); they attempt to dispense with other grammatical information such as

constituency or functionality. In Pattern Grammar, it is assumed that the syntactic

surface structure of a phrase is enough to map one-to-one with its meaning. In sum,

Pattern Grammar deals with the direct association between surface grammatical

structures (i.e. patterns) and meaning, without considering other levels of grammatical

organization.

However, we claim that the patterns defined by Hunston and Francis are not

only surface syntactic representations, but that they also implicitly contain some high-

level grammatical information. In particular, the patterns introduced above are also

provided with dependency information between a head and its modifiers (or dependent

expressions). Let’s take the pattern N on n. This structure only represents those cases

were the on n complement depends on the nominal head of N. So, this pattern cannot be

used to represent an expression such as the paper on the table, belonging to the sentence

he put the paper on the table. Here, it is the verb put that subcategorizes the on n

complement. In fact, within the pattern N on n, the head of the noun group n is

syntactically related to the preposition on, which in turn is syntactically related to the

head of N. It follows that patterns do not only contain a surface sequence of lexical

items and parts-of-speech, but that they are also organized as a complex syntax structure

containing head-dependent binary relationships among their internal elements.

9

Our DepPattern formalism uses part-of-speech surface chains, morphological

features, and lexical items not in order to identify meaningful patterns of words, but

syntactic dependencies instead. So, following the idea stated in Teubert (2007), the aim

of our formalism is to complement surface patterns with more structured linguistic

information such as syntactic dependencies. DepPattern can also be used to identify the

meaningful patterns of a word, but this is only a side-effect of its main objective,

namely, to recognize dependencies.

2.3 Dependency-Based Approach

As has been said in the two previous subsections, our formalism takes into account the

distinction between the open-choice model and the idiom principle, as well as the idea

that surface patterns are semantically motivated structures. In addition to this, we also

take into account the underlying patterns of binary dependencies.

Dependencies have been traditionally considered to be syntactic objects. They

are at the centre of many syntactic theories, known as ‘dependency-based approaches’,

e.g. Dependency Grammar (Tesnière 1959), Mel’čuk’s Meaning-Text Theory (Kahane

2003), or Word Grammar (Hudson 1990). In these theories, the two main properties of

syntactic dependencies are the following: First, they are relations between individual

words. Second, they are asymmetrical relations where one of these words is always

subordinate (dependent) to the head.

Given these two basic properties, our formalism defines a pattern as a sequence

of parts-of-speech, each one standing for an individual word, and representing an

asymmetrical dependency. Every pattern contains at least two target parts-of-speech –

the head and its dependent – and may contain an indefinite number of optional

10

contextual tags (distinguished by square brackets). Let’s take an example:

VERB [DT]? [ADJ]* NOUN

This pattern can be associated with a specific dependency, namely the direct object

relationship between a verb, the head, and a noun, its dependent. It consists of two

target parts-of-speech (VERB and NOUN) and two contextual ones: [DT]? and [ADJ]*.

Such a pattern, which does not contain any explicit lexical information, will enable us to

identify the direct object dependency between any verb, e.g. to write, and any noun, e.g.

letter, within different types of constructions: write a nice letter, write a letter, write

nice letters, write letters, etc. Notice that the wildcards “ ? ” and “ * ” are the usual

metacharacters to search for any sequence of the same string: [DT]? represents 0 or 1

determiners, while [ADJ]* 0 or more adjectives. In Section 5, we will give a more

accurate description of the elements involved in patterns.

Another example of a pattern used by our DepPattern formalism is the following

more complex structure:

VERB<lemma:turn> [DT]? [ADJ]* [NOUN]? PRP<lemma:on>

This pattern was enriched with lexical information. VERB<lemma:turn> represents the

verb turn while PRP<lemma:on> is the preposition on. It can be used to identify the

dependency between turn and the particle on, regardless of its syntactic variation:

(3) (a) This means you must always turn the light on when the carriage is at the right

11

(b) When it is plugged in it will turn the red light on

(c) You shouldn’t turn on the light at night

We will see later, in Section 5.6, how the formalism allows us to take into account the

distinction between semi-fixed idioms and standard syntactic units.

Furthermore, most dependency grammars assume the ‘uniqueness principle’.

This principle states that each word has only one head, i.e. a word plays the role of

dependent only once. However, some frameworks like Word Grammar (Hudson 1990)

do not assume such a principle. Hudson uses multiple heads to account for different

linguistic phenomena. He considers that the uniqueness principle is too restrictive. Our

formalism takes into account the uniqueness principle as the main strategy in searching

for new dependencies. The search strategy is the following: if a dependent word is not a

head of further dependencies, then this word can be removed from the search space.

However, in order to take into account ideas of other frameworks such as Word

Grammar, the uniqueness principle can be suspended, if required. We will provide more

details on this in Section 5.

To summarize, DepPattern is a formal grammar that makes use of patterns

enriched with lexical and morphological information in order to identify binary

dependencies between words. In some cases, the identified dependencies represent

open-choice syntactic structures, but they may also form part of semi-fixed idiomatic

units. To make the process of dependency identification faster, the search strategy is

based on the uniqueness principle, which however can be skipped under certain

conditions (cf. Section 5.5).

12

3. Related Formal Grammars

In the literature, we find at least two different grammatical formalisms that do not

clearly separate lexicon from syntax: Constraint Grammar and Lexicalized Tree

Adjoining Grammar.

The constraint grammar formalism (Karlsson 1990, Bick 2006) generates

context-dependent rules conceived as linguistic constraints. It is based on the notion of

‘eliminative’ parsing. Constraints are defined to discard as many alternatives (readings)

as possible. The main idea underlying the formalism is to treat morphological, lexical,

syntactic and semantic disambiguation by the mechanism of eliminating improper

alternatives. Each rule (i.e. constraint) adds, removes, selects or replaces a tag or a

pattern of grammatical tags in a given sentence context. In other words, rules rely on the

same basic operations to identify either lexical units or morpho-syntactic structures.

This is a very powerful and expressive formalism. The main problem has to do with its

internal complexity. The formalism is constituted by a large set of instructions and

commands acting as a high-level programming language. Each rule/constraint is a

complex object consisting of a domain, an operator, a target, and a context condition.

Without specific training in this high-level language, the process of elaborating

constraint-based rules appears to be quite cumbersome for linguists.

Lexicalized Tree Adjoining Grammar also seems to mitigate the gap between

lexicon and grammar to a certain extent (Abeillé et al. 1989). Lexical items are

associated with a finite set of syntactic structures by defining a domain of locality over

which constraints are specified. The grammar is easily lexicalized because Tree

Adjoining languages are not context-free grammars: they are mildly context sensitive.

This way, the same context-sensitive grammar is used for idioms as for open-choice

13

syntactic structures. The latter are what Abeillé & Schabes (1989:1) call “free

sentences”.

The main problem of lexicalized Tree Adjoining Grammar is its too-restricted

notion of context. A context is defined as a local structure associated with a lexical item,

which is the head of such a structure. More precisely, following the principles of the X-

bar theory, local contexts correspond to the maximal projection of the category X-bar of

the head. For instance, a noun phrase is seen as the local context of the head noun.

However, we claim that in order to treat many controversial cases, larger contexts are

required. In Hunston & Francis (1999), we can find many examples which require

contexts beyond local domains. Consider the adjective privilege followed by a to-

infinitive clause:

(4) (a) All those who had the privilege to know him

(b) It was my privilege to watch the game

The to-infinitive clause is syntactically dependent on privilege only if this noun follows

some specific verbs, in particular to have and to be. By contrast, when privilege follows

other verbs, the noun does not select the to-infinitive clause. For instance, in the

following sentence:

(5) He used the privilege to control custom functions

Here, it is the verb to use that subcategorizes the to-infinitive clause. So, in order to

elaborate a syntactic rule linking the noun privilege to the to-infinitive clause (its

14

complement), it is necessary to take into account information on an external verb, which

does not belong to the maximal projection of the noun. In other words, we need to

specify a verb that is not part of the local context of the noun privilege, given that the

restricted context of a head noun is only constituted by its specifiers, complements, and

modifiers (Hunston & Francis 1999). In short, local contexts are not enough to identify

word dependencies. Larger contexts and therefore more specific grammatical patterns,

are required.

The formalism we will describe in the following section tries to overcome the

two shortcomings stated here, for it is easy to grasp by linguists, and at the same time it

is not restricted to local contexts.

4. Overview of the system

Our formalism enables linguists to write grammars that will be compiled into

dependency-based parsers. We have implemented a DepPattern compiler, called Compi,

brought under the GNU General Public License (GPL), which can generate

deterministic parsers, written in Perl, for five different languages: Spanish, English,

French, Portuguese and Galician. DepPattern parsers are also robust since they are

mainly based on regular expressions and take as input any text, PoS tagged by either

Tree-Tagger (Schmid 1994) or FreeLing (Carreras et al. 2004). In the Sketch Engine

(Kilgarriff et al. 2004), syntactic dependencies and collocations are identified using a

similar robust technique: pattern-matching over PoS tags. According to Nivre & Nilson

(2003: 2),

deterministic dependency parsing can be viewed as an interesting compromise

15

between deep and shallow processing. It is a kind of deep processing in that the

goal is to build a complete syntactic analysis for the input string, not just identify

basic constituents as in partial parsing. But it resembles shallow processing in

being robust, efficient, and deterministic.

DepPattern parsers are robust, deterministic, and efficient: they are able to parse about

10,000 words per second on a processor Core 2 Quad, 2.8 GHz.

At http://gramatica.usc.es/pln/tools/deppattern.html, it is possible to download a

linguistic toolkit under the GPL licence, with the following modules: a tag converter

from different tagsets used by Tree-Tagger and FreeLing, five by default DepPattern

grammars (one grammar per language), their corresponding DepPattern parsers, a

grammar compiler to generate parsers from new grammars written by users, and a

generic command for putting all of these modules together. The whole system is similar

to the Intex architecture (Silberztein 1994), a linguistic environment to parse corpora

with Finite State Transducers. The toolkit installation includes Tree-Tagger but not

FreeLing, which can be downloaded from http://garraf.epsevg.upc.es/freeling/ for free

installation. The system can be run on any GNU/Linux distribution.

16

Figure 1. Computational architecture of DepPattern

Figure 1 depicts an overview of the whole system. Raw text is processed by one

of the available PoS taggers (e.g. Tree-Tagger-English if the input text is in English),

then the appropriate tag converter changes the tagger output into a new layout readable

by the DepPattern parser, which was previously compiled from an English grammar.

The final output of the parser is a syntactic analysis of the input text. Such an analysis is

the set of dependency triplets identified by the rules of the grammar. To write a

DepPattern grammar, it is necessary to know the type of information provided by the

input of the parser, i.e. the output of the PoS converter. This is a plain text file with as

many lines as tokens in the corpus. Each line consists of two columns: the first one

contains a token and the second one all linguistic information (morphological, lexical

and syntactic) associated with that token. For instance, the PoS converter transforms the

expression Mary reads good books into these 4 lines:

Mary gender:0|lemma:Mary|number:S|person:3|tag:NOUN|token:Mary|type:P|

reads gender:0|lemma:read|mode:0|number:0|person:3|tag:VERB|tense:P|token:reads|type:0|

good degree:0|function:0|gender:0|lemma:good|number:0|tag:ADJ|token:good|type:0|

books gender:0|lemma:book|number:P|person:3|tag:NOUN|token:books|type:C|

17

The second column is an attribute:value structure following the EAGLES

recommendations for the morphosyntactic tagging of text (EAGLES, 1996).2 This

information structure must be taken into account by the linguist when writing a

DepPattern grammar. Notice the PoS tag information (in bold) is only one of the

different attribute:value pairs of the structure.

In the following section, we will pay attention to the description of the

formalism used to write a compilable grammar.

5. A brief introduction to the DepPattern formalism

DepPattern is a formal grammar based on context-dependent rules, augmented with

morphological and lexical features, which seeks to identify the dependency structure of

sentences.

In this section, we will briefly introduce some of the main properties of our

formalism. More details are given in the tutorial and specific documentation.3

5.1. Basic description of rules

A specific DepPattern grammar is constituted by a set of context-dependent rules. Every

rule aims at identifying a specific dependent-head relation by means of a pattern of part-

of-speech (PoS) tags. A pattern of PoS tags is defined as a sequence of PoS tags

containing, at least, two tags related by a syntactic dependency. A rule is always

constituted by two elements:

– a pattern of PoS tags, which can also be enriched with lexical and morphological

information;

18

– the name of a dependent-head relation found within the pattern.

Let’s see an example:

(6) DobjR : VERB [DT]? [ADJ]* NOUN

%

The colon separates the pattern of PoS tags (at the right) from the name of the

dependency: DobjR. Symbol “%” signifies the end of the rule. In this example, lexical

and morphological information are not taken into account. The names of both PoS tags

and dependencies must be declared in two configuration files: “tagset.conf” and

“dependencies.conf”, respectively. In “tagset.conf”, all tags provided by the tag

converter are declared. As has been said above, the goal of the converter is to unify all

tagsets inherited from the different PoS taggers used by DepPattern. The linguist can

modify the name of any tag declared in “tagset.conf”. As far as the names of

dependencies are concerned, the linguist can declare all those he/she needs to write the

grammar. In the file “dependency.conf”, the name of each dependency must be assigned

a type. For instance, the line:

DobjR HeadDep

means that the dependency name DobjR is assigned the type “HeadDep”. DepPattern

defines two basic types, “DepHead” and “HeadDep”, according to the position of the

dependent with regard to the head. “DepHead” type is instantiated by those

dependencies containing a dependent node appearing to the left of the head. “HeadDep”

19

type is instantiated by those containing a dependent appearing to the right. There can be

an indefinite number of contextual tags between the head and the dependent. Since

DobjR was declared to be of type “HeadDep”, it can be used to identify nouns

appearing to the right of verbal heads (“Dobj” stands for Direct Object, and “R” for

right). In the rule in (5) above, DobjR permits identifying a dependency relation

between the two PoS tags that are not distinguished by square brackets: VERB and

NOUN. Since DobjR is assigned the “HeadDep” type, it classifies the verb as the head

and the noun as the dependent. The remaining tags, which are distinguished by square

brackets, represent the context of the relation. In particular, [DT]? means that there can

be none or one determiner, and [ADJ]* none or several adjectives, all of them between

the verb and the noun.

5.2 Output: Dependency triplets

As has been said, compiled rules (i.e. the parser) take as input any text

previously PoS tagged with Tree-Tagger or FreeLing and transformed by a tag

converter into an ordered list of tokens with attribute-value structures, such as those

shown in Section 4. The output of the parser is a list of dependency triplets. Let’s

suppose the system has correctly pre-processed the expression reads a good book.

Considering the rule in (5), described above, the parser would yield as output the

following triplet:

(DobjR; read_VERB; book_NOUN)

The first element, DobjR, is the name of the dependency, the second one is the head and

20

the third one is the dependent unit. Both the head and the dependent are provided here

with their corresponding PoS tag. This representation is only an approximation of that

returned by the system. In order to simplify the description of the triplets, we leave the

remaining linguistic information (token, number, gender, tense, etc.) out of this

simplified representation. Information on token positions within the sentence is also

removed. In sum, to make the reading easier, each analyzed word will be described

within the triplets with only two elements: a lemma and a PoS tag.

5.3 Attribute-value information and operations on attributes and values

Further elements can be used to elaborate different aspects of a rule, namely

morphological features, specific lemmas, lexical classes, and operations such as

agreement, recursivity, inheritance, change of values, addition of new attribute-value

pairs, etc. Let’s take the following examples:

(7) AdjnL : ADV<type:Q> ADJ

%

AdjnL : ADJ NOUN

Agr: number, gender

%

In the first rule of (7), the attribute-value <type:Q> elaborates the information about the

adverb tag. It is filled by quantifier (Q) adverbs such as very or quite. In the second rule

above, “Agr” stands for the operation of agreement, where “number, gender” identify

the names of the attributes whose values must be shared by both the head and the

21

dependent. Besides, DepPattern permits the use of other operations such as “Inherit” or

“Add”. The former allows the linguist to select some values of the dependent in order to

assign them to the corresponding head attributes. The latter can be used to either modify

selected values or to add new attribute-value pairs (e.g. semantic features) to the

information structure of the head.

Finally, lexical classes containing lists of lemmas can be declared in a

configuration file: “lexical_classes.conf”. The variables associated with those lists will

be used within the rules. For instance, we can define the extensional class of verbs

requiring “human” subjects by creating a specific variable, $Human_Verbs, associated

with the list of such verbs. Then, the linguist can use that variable to write a lexical

restriction within a rule aimed to identify the subject of verbs.

5.4 The uniqueness principle

Most dependency grammars presuppose the ‘uniqueness principle’, which states that

each word has only one head, i.e. a word plays the role of dependent only once. Default

rules are applied by taking into account such a principle. Accordingly, a rule not only

identifies a dependency between two words, but also removes the dependent word from

the input of the next rule to be applied. The fact of removing the dependent each time a

rule is applied enables the linguist to simplify the definition of patterns within the rules.

In other words, the removal of dependent nodes reduces the search space since it

shortens the number of possible combinations of tags. This algorithm is inspired by the

“shift-reduce” transition used by some deterministic dependency-based parsers (Nivre

2005). Let’s see an example in (8). Let’s suppose that we build a simple grammar with

the following two rules:

22

(8) SpecL : DT NOUN

%

AdjunctL : ADJ NOUN

%

These rules can be used to analyze an expression such as a beautiful mountain. The

input of the rules (output of the tag converter) is the following sequence of tokens and

attribute-value structures:

a gender:0|lemma:a|number:0|person:0|possessor:0|tag:DT|token:a|type:0|

beautiful degree:0|function:0|gender:0|lemma:beatiful|number:0|tag:ADJ|token:beatiful|type:0|

mountain gender:0|lemma:mountain|number:S|person:3|tag:NOUN|token:mountain|type:C|

The PoS tags assigned to the three tokens are in bold: DT, ADJ, and NOUN. The first

rule of (8) to be applied is AdjunctL, which identifies the relation between the adjective

beautiful (dependent) and the noun mountain (head). Once this dependence is identified,

the dependent token (i.e. beautiful) and its attribute-value structure are removed from

the search space, i.e. from the input sequence. This gives rise to a reduced tagged text:

a gender:0|lemma:a|number:0|person:0|possessor:0|tag:DT|token:a|type:0|

mountain gender:0|lemma:mountain|number:S|person:3|tag:NOUN|token:mountain|type:C|

The new input no longer contains the interpolated adjective. This situation enables the

other rule in (83), SpecL, to be applied. Notice that SpecL only succeeds when all

adjunct adjectives have been removed. Now, SpecL both identifies the determiner-noun

dependency and removes the dependent determiner from the input. The removal of

23

dependent tags from the input tagged text leads to a systematic reduction of context

information within the definition of rules. Otherwise, a rule such as SpecL, aimed at

identifying a determiner-noun dependency, would require a pattern with, at the very

least, a contextual adjective between both tags. Therefore, it follows that the strategy

based on the uniqueness principle helps to simplify the definition of generic rules; it

narrows the use of context tags only to restrictive rules coping with more irregular

cases. Generic rules with abstract patterns such as those described in our example (8) do

not need contextual tags, as they are systematically removed by previous rule

applications. The main drawback of such a strategy derives from the fact that grammar

is not fully declarative. The order in which rules are applied is significant. However,

this situation has a clear advantage. Rules are provided with a search control strategy

long utilized in procedurally-oriented grammars, making parsing robust and

deterministic.

The analysis of a sentence is an iterative process that stops when there are no

more rules to apply. As a result, the parser generates a set of triplets representing those

dependencies identified by the rules. The output generated by the two rules described in

(8) is the following two triplets:

(SpecL; mountain_NOUN; a_DT)

(AdjunctL; mountain_NOUN; beautiful_ADJ)

5.5 Environments without the Uniqueness Principle

In many cases, however, ruling out uniqueness allows us to yield a richer dependency

analysis. We use local environments where the removal of dependents is not allowed, in

24

order to deal with syntactic ambiguity, words with more than one head, semi-fixed

idioms, etc. For instance, let us regard a case of one word likely to have two heads.

Objective complements are functions that can be described as adjectives somehow

dependent on both the verb and the direct object. Take the sentence:

(9) Such experiences make life worthwhile

It is possible to propose an analysis that links the adjective worthwhile to both the verb

make and the noun life (and not to the subject). This analysis is only possible if the

uniqueness principle is locally suspended. For this purpose, we use a local environment,

described as a NEXT structure of rules:

(10) AdjunctR: [VERB] NOUN ADJ

NEXT

AdjunctR: VERB [NOUN] ADJ

%

This NEXT structure allows us to apply an indefinite sequence of rules without

removing the dependent tags from the search space. This results in a fully declarative

grammatical environment. Thus, given the sentence in (9), we are able to grasp the two

different dependent relationships held by the adjective: its relation to both the noun and

the verb. The NEXT structure identifies the following two dependency triplets:

25

(AdjunctR; life_NOUN; worthwhile_ADJ)

(AdjunctR; make_VERB; worthwhile_ADJ)

As we will observe in the next section, extraction information systems are more

interested in syntactic-semantic dependencies than in purely syntactic links. The link

between worthwhile and the verb make is provided with more generic syntactic

information than that between worthwhile and life, which is semantically motivated.

Therefore, the latter is more significant for the task of semantic extraction.

The NEXT environment can also be used to deal with other linguistic

phenomena such as syntactic ambiguity. For instance, the ambiguous attachment of a

prepositional phrase to either a noun or a verb (known as “PP attachment”) can be easily

introduced within a NEXT environment, which allows both dependencies to be

identified. This is a similar case to that described above in (10). The ambiguous

preposition is linked to two different heads before being removed from the input chain.

This way, the two readings of the ambiguous expression buy the books for children in

(11) can be treated as shown in (12):

(11) (a) The foundation helps donors to buy books for children in South Africa

(b) Buy books for children online

(12) PrepCompR : [VERB] NOUN PRP

NEXT

PrepCompR : VERB [NOUN] PRP

%

26

PrepCompR stands for prepositional complements appearing to the (R)ight of the head.

In (12), the preposition is attached both to the head noun by the first rule, and to the

head verb by the second one. It gives rise to two dependency triplets representing the

two possible prepositional attachments:

(PrepCompR; buy_VERB; for_PRP)

(PrepCompR; book_NOUN; for_PRP)

As we will show in the next section, the NEXT environment is also useful in

defining semi-fixed idiomatic expressions.

Finally, DepPattern also allows us to define global environments where the

uniqueness principle is not operative at all. This is performed using the “NoUniq”

command, which prevents rules from removing dependents. An extensive use of this

command makes the grammar fully declarative, but forces the linguist to define rules

with long patterns, since he/she is required to take into account all possible contextual

tags between the dependent and the head.

5.6 Types of dependencies

As has been said before in Section 5.1, our formalism allows the linguist to define the

dependencies he/she considers necessary to build the grammar. If a new dependency is

required, he/she must declare it in the file “dependencies.conf” with a name and an

assigned type. DepPattern distinguishes two types of dependencies: open-choice and

idiomatic. Open-choice dependencies yield syntactic relations between lexical units.

27

Idiomatic dependencies also produce syntactic relations between lexical units, but in

addition they generate a new lexical unit by modifying the lemma of the head. So far, all

examples were described using only open-choice dependencies.

5.6.1 Open-choice dependencies

The difference between “open-choice” and “idiomatic” is not based on the degree of

freedom. The degree of freedom in open-choice dependencies is directly associated with

the number of restrictions involved in the corresponding rule. Thus, a rule restricted by

many lexical and morphological features has a lower degree of freedom than a rule

using only part-of-speech tags. For instance, the three rules defined below in (13)

represent different degrees of freedom:

(13) AdjunctL : ADV VERB

%

AdjunctL : ADV<type:Q> ADJ

%

PrepCompR : VERB<lemma:focus> [NOUN]? PRP<lemma:on>

%

The first rule is not restricted by any morphological or lexical features. Any adverb or

verb may fill the generic part-of-speech constraints. The second rule, however, contains

a specific morphological constraint, which makes the syntactic choice less open. Only

those adverbs belonging to the class of Q(uantifiers) fill the ADV condition. The third

rule contains even more specific lexical restrictions. It is only filled if a specific verb,

28

focus, and a specific preposition, on, co-occur in the same expression. Notice that this

rule was defined as open-choice even though it conveys very specific lexical

information. Lexicalized rules have a very low degree of freedom (like idiomatic rules),

but they are not defined as idiomatic if they do not generate a new lexical unit. In this

case, the combination of focus and on does not generate a phrasal verb focus&on.

Lexicalized rules with open-choice dependencies are useful to avoid ambiguity in PP-

attachment. Let’s take, for instance, the analysis of the expression focus the topic on

education, using the following four rules:

(14) PrepCompR : VERB<lemma:focus> [NOUN]? PRP<lemma:on>

%

DobjR : VERB NOUN

%

PrepTermR : PRP NOUN

%

SpecL : DT NOUN

Agr: number

%

The first rules that will be applied are PrepTermR and SpecL. The application of the

latter removes the determiner from the input and allows, in a second iteration, for the

remaining two rules to be applied. The application of these four rules gives rise to the

following four dependencies:

29

(SpecL; topic_NOUN; the_DT)

(DobjR; focus_VERB; topic_NOUN)

(PrepCompR; topic_NOUN; on_PRP)

(PrepTermR; on_PRP; education_NOUN)

As has been said before, DepPattern allows one to work not only with single

lemmas (such as <lemma:focus>), but also with classes of lexical words. For instance, it

is possible to previously define a lexical variable containing the verbs that subcategorize

the preposition on and use that variable instead of a specific lemma. Lexical classes are

defined in the configuration file “lexical_classes.conf”.

5.6.2 Idiomatic dependencies

Idioms are lexical units constituted by syntactically related words. We use idiomatic

dependencies to link all words within idioms. The dependencies identified as idiomatic

are the same as those identified as open-choice (e.g. subject, direct object, prepositional

complement, adjunct, specifier, etc.). So, every open-choice dependency should have its

idiomatic counterpart. The idiomatic versions of SubjL, RobjR, AdjunctL, or

PrepCompR are noted as SubjL.lex, RobjR.lex, AdjunctL.lex, and PrepCompR.lex. We

use by convention the “.lex” extension to mark dependencies as idiomatic.

The only difference between open-choice and idiomatic dependencies is the new

lexical unit generated by the latter. Let’s take the following rules (one idiomatic and two

open-choice), defining the use of a specific phrasal verb:

30

(15) PrepCompR.lex : VERB<lemma:turn> [NOUN]? PRP<lemma:on>

%

DobjR : VERB NOUN

%

SpecL : DT NOUN

Agr: number

%

There is only one significant difference between the idiomatic rule PrepCompR.lex and

its open-choice counterpart, PrepCompR, defined above in (14) for focus on. The

idiomatic rule generates a higher-order lexical unit, the phrasal verb turn&on, which

will be integrated in this way in all open-choice dependencies that the verb turn is

involved in. Given the expression turn on the radio, the three rules described in (15)

produce the following three dependencies:

(SpecL; radio_NOUN; the_DT)

(DobjR; turn&on_VERB; radio_NOUN)

(PrepCompR.lex; turn_NOUN; on_PRP)

As has been said at the end of section 5.6.1. it would be possible to define more

generic rules by declaring in the corresponding configuration file a class of transitive

phrasal verbs sharing the particle on. To create and update classes of phrasal verbs,

nothing prevents us from using automatic strategies based on information extraction,

such as that described in (Fazly et al. 2009).

31

Let’s take a moment to note that the idioms generated by the formalism

represent semi-fixed and discontinuous constructions since they were built using rules

possessing the same syntactic properties as those used for the standard open-choice

constructions. DepPattern blurs the difference between syntax and lexis. Idiomatic rules

are defined as lexicalized rules, but the formalism also allows for a definition of

lexicalized rules that are not idiomatic.

To deal with more complex semi-fixed idioms, we can make use of hybrid

sequences of idiomatic and open-choice rules within NEXT environments. For instance,

the lexical unit associated with expressions such as is not in its nature or was not in my

nature will be built by means of a NEXT structure of rules, which contains three

idiomatic dependencies (AdjunctR.lex, CompR.lex and PrepCompR.lex) and one open-

choice dependency (SpecL), which relates any possessive determiner to the noun

nature:

AdjunctR.lex : VERB<lemma:be> ADV<lemma:not> [PRP<lemma:in>] [DT<type:P>] [NOUN<lemma:nature>]

NEXT

CompR.lex : [VERB<lemma:be>] [ADV<lemma:not>] PRP<lemma:in> [DT<type:P>] NOUN<lemma:nature>

NEXT

SpecL : [VERB<lemma:be>] [ADV<lemma:not>] [PRP<lemma:in>] DT<type:P> NOUN<lemma:nature>

NEXT

PrepCompR.lex : VERB<lemma:be> [ADV<lemma:not>] PRP<lemma:in> [DT<type:P>] [NOUN<lemma:nature>]

%

The application of the three idiomatic rules generates a new verbal unit whose lemma is:

be¬&in&nature. The possessive determiner does not take part in the lemma since its

realization is open to many choices. This determiner is integrated into the lexical unit,

32

not as part of the lemma, but as an element of the expression’s internal syntactic

structure. To deal with other possessive realizations of the same unit (e.g. is not in the

nature of the president, is not in the president’s nature, etc.), it would be necessary to

define a slightly more complex NEXT structure.

DepGrammar is merely a linguistic tool. It does not solve theoretical problems

such as how to decide whether an expression has or does not have an idiomatic

interpretation. Linguists, and not the system, must decide what is treated as idiomatic. In

particular, it is the linguist who interprets that turn on is idiomatic and not focus on.

Likewise, it she or he who makes is not in her nature a unit of meaning instead of it is

not in her nature to. These linguistic decisions should be made taking into account the

type of application the grammar was made for. A linguistic decision is good if it helps

improve the application system or specific task (information extraction, machine

translation, summarization, etc.) that makes use of the syntactic analysis generated by

the grammar. In the next section, we will describe a task-based evaluation of a small

grammar written with DepPattern.

6. Information extraction from a syntactically annotated corpus

According to Kilgarriff (2003: 12), “it is of greatest interest to evaluate a system or

resource according to how well it performs a task which we really want it to perform”.

In this section, we will describe a task-based evaluation of a DepPattern grammar. More

precisely, we will perform an (indirect) evaluation of the grammar by assessing the

accuracy of an application, namely the extraction of similar words, which uses a parser

compiled from that grammar. Although the dependency-based parsing can be useful for

any extraction task, the evaluation will be focused on word similarity extraction.

33

The specific objective of this section is to compare different semantic extraction

methods, namely two window-based methods and one dependency-based strategy. The

window-based ones extract semantically related words using simple word co-

occurrences. The latter performs the same extraction by making use of syntactic

dependencies. To identify dependencies, we used a parser built from a small DepPattern

English grammar. This is a very generic grammar which only contains about 25

dependency-based rules.

In sum, this experiment will allow us to check whether parsers generated from

DepPattern grammars may improve semantic extraction. For this purpose, we will

compare the scores obtained using a dependency parser to those obtained by raw co-

occurrence-based methods without syntactic information.

6.1 The task: Word similarity extraction

A well-known task in Information Extraction is the use of word/feature co-occurrences

to acquire semantic information such as word similarity (Grefenstette1994, Lin 1998).

Each word in the corpus is associated with a set of features (or linguistic contexts). To

extract the words most similar to a target word, all strategies take into account their

shared features. This relies on Harris’ distributional hypothesis (Harris 1985).

According to this assumption, words occurring in similar contexts (i.e. sharing many

features) are considered as semantically similar. Two different strategies, windows-

based and syntactic-based, can be distinguished, depending on the definition of

“feature”. Windows-based techniques define a feature of a target word as any word with

which it co-occurs within a window of size N, where N is the number of words

appearing both to right and to the left of the target word. This means the features of a

34

word are its neighbors in a corpus. For instance, given the expression Mary reads

interesting books and loves cinema, and a window of size 3 (looking at three words to

the right and three words to the left of the target word) the features of books would be

the following six words:

(Mary, reads, interesting, and, loves, cinema)

Syntactic-based strategies, on the other hand, define a feature of a (previously

lemmatized) target word as a triplet consisting of: a dependency name, a lemma, and the

syntactic position occupied by the target word (Gamallo et al. 2005). For instance, given

the same expression cited above along with a dependency-based analysis, the features of

book would be the following two triplets:

(DobjR; read; X)

(AdjunctL; X; interesting)

Where X stands for any lemmatized noun (e.g. book), appearing in that syntactic

position. Note that features based on syntactic dependencies are more informative and

precise (even if smaller in number) than those selected from windowing techniques. It is

assumed that since linguistic dependencies involve specific semantic relationships, they

should be considered as fine-grained clues for identifying semantically related words.

In our experiments, three different strategies were evaluated: two windowing

techniques and one syntax-based method. The first of these defines features using large

windows (a string between two full-stops) of tagged words. The second strategy makes

35

use of a smaller window (size 2), but considers word order. In both cases, function

words were previously removed. The third strategy, which is syntax-based, uses

dependencies to define features. The DepPattern parser used to identify dependencies

was compiled from a small English grammar.

6.2 The corpus

Experiments were performed on the British National Corpus (BNC), which contains

about 100 million word tokens.4 The corpus was PoS tagged with Tree-Tagger and

syntactically analyzed with a DepPattern parser. This task took less than 3 hours. Then,

the 10,000 most frequent nouns were selected as target words for evaluation.

6.3 The evaluation protocol

Each one of the three strategies was tested on the list of target words, namely the 10,000

most frequent nouns of BNC. For each target word of the list and for each strategy, a

ranking of the 10 most similar words was obtained, using 3 different similarity

coefficients, cosine, dice and jaccard, which made a total of 3x3 different experiments.

To evaluate the quality of the word similarity extraction, the synsets of WordNet

(Fellbaum 1998) were selected as gold standard. The automatic evaluation consisted of

measuring the quality (in terms of precision) of the 10 most similar word candidates for

each noun. For this purpose, given each evaluated noun and its 10 similar candidates,

we were able to automatically check whether the candidates are semantically related in

WordNet to the evaluated noun. Besides related words by synonymy (same synset), the

co-hyponymy relation was also taken into account, assuming that nouns sharing a direct

hyponym are co-hyponyms. In summary, for each experiment, we evaluated 100,000

36

(10,000 x 10) semantically related candidates. Precision was defined as the number of

candidates found in WordNet (synonyms and co-hyponyms) divided by the total

number of candidates (i.e. 100,000).

Let’s see an example. Table 1 shows the list of the 10 most similar words

obtained by each of the three strategies for the noun textbook. Underlined words (in

bold) are those considered to have been correctly extracted, since they were found to be

semantically related to textbook in the gold standard, i.e. in WordNet. As the table

shows, the dependency-based method extracted 4 out of 10 correct similar words. The

windowing techniques were less precise: 2 or less correct words. Notice that this

automatic evaluation is far from being perfect. WordNet does not take into account

some possible correct co-hyponyms of textbook, e.g. handbook, essay, dictionary, etc.

Table 1. Results of three strategies for the noun textbook

Similar words to textbook
Window (large) topic, mathematics, literature, subject, library, syllabus,

teaching, text, reading, essay

Window (2+word order) creation, dictionary, journal, comfort, conception, slope,
edition, interview, lord, catalogue

Dependency-based journal, dictionary, handbook, essay, brochure, leaflet,
booklet, discourse, manuscript, accounting, equation

37

6.4 Results

Table 2 depicts the quantitative results obtained for each strategy and each similarity

measure. The best scores were achieved using the syntactic dependencies identified with

a DepPattern parser: it reached a precision rate of more than 15%, compared to 11.5%

and 8.7% obtained by the two window-based methods. Bordag (2008), performed a very

similar experiment also using the BNC corpus and WordNet. The author evaluated a

window-based strategy whose best scores were also very similar to those we obtained

with the same strategy: about 8% precision. This seems to prove that our grammatical

formalism is suitable for generating useful dependency-based parsers, that is, parsers

improving NLP applications such as semantic extraction.

Table 2. Precision of the three evaluated strategies

Cosine
Precision (%)

Jaccard
Precision (%)

Dice
Precision (%)

Window (large) 8.74 8.11 8.11

Window (2+word order) 11.50 10.14 10.14

Dependency-based 15.18 12.97 12.97

However, there is still room for improvement. The dependency-based parser was

generated from a very generic DepPattern grammar, which contained only some open-

choice rules. There were neither lexicalized nor idiomatic rules. In future work, we will

elaborate different grammars at different levels of abstraction (only open-choice rules,

open-choice + lexicalized rules, open-choice + lexicalized + idiomatic rules, etc.), in

order to evaluate their efficiency for the specific task of semantic extraction. As has

been pointed out earlier, we consider that indirectly evaluating a parser against an NLP

38

application can be more informative than evaluating it directly against a treebank. The

task-based evaluation allows us to know whether the underlying grammar is or is not

useful for a specific NLP application.

7. Conclusions

This paper sketched some properties of an expressive rule language, DepPattern, aimed

at defining dependency grammars using patterns of PoS tags enriched with

morphological and lexical features. Unlike most similar formalisms, our proposal relies

on the main assumptions underlying traditional work on corpus linguistics: (i) that lexis

and grammar are not clearly separated, and (ii) that surface syntactic patterns embody

relevant semantic information. In addition, the formalism is based on a simple language

including regular expressions and is easy to grasp by linguists without a particular or

laborious training.

One of the main contributions of DepPattern is the distinction between open-

choice and idiomatic rules. The objective is to deal with semi-fixed expressions in an

appropriate way, that is to take into account their syntactic variation, as well as to

consider them as lexical units of meaning.

It is generally assumed that a richer set of syntactic dependencies improves

semantic extraction. The output of the parsers compiled from DepPattern grammars is

easily adapted for use in semantic extraction. This will allow us to properly evaluate the

efficiency of the rules defined in the grammar. Those rules giving rise to the best

precision scores should be considered to be the most semantically motivated, and

therefore the most useful for the extraction task at hand. In fact, we consider that the

feedback provided by the extraction task will help to modify and improve the definition

of the grammar, which in turn, after having been modified, should also make the

39

extraction process better. In future work, we aim to develop a bootstrapping architecture

based on the intercommunication among different modules such as grammar

construction, parser generation, semantic extraction, and automatic evaluation.

Finally, we claim our formalism to be useful for writing not only general-

purpose grammars, but also local grammars (Gross 1993, Silberztein 1994, Mason

2004). Local grammars are suited to make low-level descriptions of many grammatical

phenomena (semi-fixed idioms, specific patterns in controlled languages, etc.) that

escape a systematic description in terms of abstract syntactic rules. In sum, DepPattern

allows us to write both coarse-grained grammars aimed to deal with abstract and

systematic phenomena, and fine-grained rules organized in local grammars coping with

very specific and irregular cases.

Notes

References

Abeillé, A. & Schabes, Y. 1989. “Parsing idioms in lexicalized TAGs”. In H. Somers &

M. M. Wood (Eds.), Proceedings of the fourth conference on European chapter of the

Association for Computational Linguistics, Manchester, England, 10-12 April, 1-9.

40

Abeillé, A., Bishop, K., Cote, S., Joshi, A. & Schabes, Y. 1989. “Lexicalized TAGs,

parsing and lexicons”. In L. Hirshman (Ed.), Proceedings of the Workshop on Speech

and Natural Language, Philadelphia, Pennsylvania, 15-18 October, 210-215.

Bick, E. 2006. “A constraint grammar-based parser for Spanish”. Proceedings of the 4th

Workshop on Information and Human Language Technology, Ribeirão Preto, Brazil,

27-28 October, 127-138.

Bordag, S. 2008. “A comparison of co-occurrence and similarity measures as

simulations of context”. In A. Gelbukh (Ed.), Proceedings of the 9th international

conference on Computational Linguistics and Intelligent Text Processing, Haifa, Israel,

17-23 February, 52-63.

Carreras, X., Chao, I., Padró, L. & Padró, M. 2004. “An open-source suite of language

analyzers”. In N. Calzolari (Ed.), Proceedings of the 4th International Conference on

Language Resources and Evaluation. Lisbon, Portugal, 26-28 May, 239-242.

Debusmann, R. & Kuhlmann, M. 2010. “Dependency Grammar: Classification and

Exploration”. In M. W. Crocker & J. Siekmann (Eds.), Resource-Adaptive Cognitive

Processes. Berlin/Heidelberg: Springer-Verlag, 365–388.

Fazly, A., Stevenson, S. & Cook, P. 2009. “Unsupervised type and token identification

of idiomatic expressions”. Computational Linguistics, 35 (1), 61-103.

41

Fellbaum, C. 1998. “A semantic network of English: The mother of all WordNets”.

Computers and Humanities, 32 (2-3), 209-220.

Gamallo, P., Alexandre, A. & Lopes, G. P. 2005. “Clustering syntactic positions with

similar semantic requirements”. Computational Linguistics, 31 (1), 107-146.

Grefensttete, G. 1994. Explorations in Automatic Thesaurus Discovery. Boston: Kluwer

Academic Publishers.

Gross, M. 1993. “Local grammars and their representation by finite automata”. In M.

Hoey (Ed.), Data, Description, Discourse. London: HarperCollins, 26-38.

Harris, Z. 1985. “Distributional Structure”. In J. J. Katz (Ed.), The Philosophy of

Linguistics. Abingdon/New York: Oxford University Press, 26-47.

Hudson, R. 1990. English Word Grammar. Oxford: Blackwell.

Hunston, S. & Francis, G. 1999. Pattern Grammar. Amsterdam/Philadelphia: John

Benjamins.

Kahane, S. 2003. “Meaning-Text Theory”. In V. Agel, L. Eichinger, H.-W. Eroms, P.

Hellwig, H. J. Heringer & H. Lobin (Eds.), Dependency and Valency. An International

Handbook of Contemporary Research, Vol. 1, Berlin/New York: de Gruyter, 546-569.

42

Karlsson, F. 1990. “Constraint Grammar as a framework for parsing running text”.

Proceedings of the 13th Conference on Computational Linguistics, Helsinki, Finland,

20-25 August, 168-173.

Kilgarriff, A. 2003. “Thesauruses for Natural Language Processing”. In C. Zong (Ed.),

Proceedings of Natural Language Processing and Knowledge Engineering (NLPKE).

Beijing, 25-27 October, 5-13

Kilgarrif, A., Rychly, P., Smrz, P. & Tugwell, D. 2004. The Sketch Engine. ”. In G.

Willians (Ed.), Proceedings of the Eleventh EURALEX International Congress, Lorient,

France, 6-10 July, 105-116.

Langacker, R. W. 1991. Foundations of Cognitive Grammar, Vol II: Descriptive

Application. Stanford: Stanford University Press.

Langacker, R. W. 2003. “Constructional integration, grammaticalization, and serial verb

constructions”. Languages and Lingusitcs, 4 (2), 251-278.

Lin, D. 1998. “Automatic retrieval and clustering of similar words”. Proceedings of the

36th Annual Meeting of the Association for Computational Linguistics and 17th

International Conference on Computational Linguistics, Montreal, Canada, 10-14

August, 768-774.

43

Mason, O. 2004. “Automatic processing of local grammar patterns”. In M. Lee (Ed.),

Proceedings of the 7th Annual Colloquium for the UK Special Interest Group for

Computational Linguistics, Birmingham, UK, 6-7 January, 166-171.

Mason, O. & Hunston, S. 2004. “The automatic recognition of verb patterns: A

feasibility study”. International Journal of Corpus Linguistics, 9 (2), 253-270.

Nivre, J. 2005. “Dependency grammar and dependency parsing”. MSI report 05133.

Växjö University: School of Mathematics and Systems Engineering. Also available at:

http://stp.lingfil.uu.se/~nivre/docs/05133.pdf (accessed November 2010).

Nivre, J. & Nilsson, J. 2003. “Three algorithms for deterministic dependency parsing”.

Proceedings of 14th Nordic Conference of Computational Linguistics, Reykjavik,

Iceland, 30-31 May, 1-8.

Schmid, H. 1994. “Probabilistic Part-of-Speech tagging using decision trees”. In D.

Jones (Ed.), Proceedings of the International Conference on New Methods in Language

Processing, Manchester, UK, 14-16 September, 44-49.

Silberztein, M. 1994. Intex: A Corpus Processing System. Proceedings of the 15th

International Conference on Computational Linguistics, Kyoto, Japan, 5-9 August, 579-

583.

44

Sinclair, J. McH. 1991. Corpus, Concordance, Collocation. Oxford: Oxford University

Press.

Tesnière, L. 1959. Eléments de Syntaxe Structurale. Paris: Klincksieck.

Teubert, W. 2007. “Sinclair, pattern grammar and the question of hatred”. International

Journal of Corpus Linguistics, 12 (2), 223-248.

Authors’ addresses

Pablo Gamallo Otero
Department of Spanish
University of Santiago de Compostela
15782 Santiago de Compostela
Galiza, Spain

pablo.gamallo@usc.es

Isaac González López
Department of Spanish
University of Santiago de Compostela
15782 Santiago de Compostela
Galiza, Spain

isaacjgonzalez@gmail.com

45

1 . The compiler and five compiled parsers are freely available (GPL license) at:
 http://gramatica.usc.es/ pln/tools/deppattern.html

2. EAGLES: http://www.ilc.cnr.it/EAGLES/home.html

3 . A tutorial on the formalism is available at http://gramatica.usc.es/pln/tools/tutorialGrammar.pdf. The user guide of
the system is at http://gramatica.usc.es/pln/tools/user_guide.pdf

4 . http://www.natcorp.ox.ac.uk/

	Table 2. Precision of the three evaluated strategies
	Authors’ addresses

