
LinguaKit: a Big Data-based multilingual tool for
linguistic analysis and information extraction
Pablo Gamallo∗, Marcos Garcia†, César Piñeiro∗, Rodrigo Martı́nez-Castaño∗ and Juan C. Pichel∗

∗Centro de Investigación en Tecnoloxı́as da Información (CiTIUS)
Universidade de Santiago de Compostela
Santiago de Compostela, Galiza/Spain

{pablo.gamallo, cesaralfredo.pineiro, rodrigo.martinez, juancarlos.pichel}@usc.es
†Universidade da Coruña

LyS Group, Departamento de Letras
Faculty of Philology, Corunha, Galiza/Spain

marcos.garcia.gonzalez@udc.gal

Abstract—This paper presents LinguaKit, a multilingual suite
of tools for analysis, extraction, annotation and linguistic cor-
rection, as well as its integration into a Big Data infrastructure.
LinguaKit allows the user to perform different tasks such as
PoS-tagging, syntactic parsing, coreference resolution (among
others), including applications for relation extraction, sentiment
analysis, summarization, extraction of multiword expressions, or
entity linking to DBpedia. Most modules work in four languages:
Portuguese, Spanish, English, and Galician. The system is pro-
grammed in Perl and is freely available under a GPLv3 license.

I. INTRODUCTION

LinguaKit is a multilingual toolkit aimed at performing
several tasks in linguistic analysis and information extraction.
The modules of LinguaKit have been designed and imple-
mented by making use of a variety of strategies. Some modules
were designed with symbolic methods based on heuristics and
language resources, others were implemented with stochas-
tic methods relying on supervised, unsupervised, and semi-
supervised machine learning, and others were based on hybrid
methods including both symbolic and statistical strategies.
Most of the modules are available for four languages, namely
English, Portuguese, Galician, and Spanish. All modules and
the whole architecture are written in Perl. LinguaKit can be
used as a web demo, and is available via RESTful API.1 The
source code is released under GPLv3 license.2

Table I shows the modules of the suite organized in four
categories: basic analysis, deep analysis, extraction, and lin-
guistic applications. Our suite can be seen as an ecosystem of
linguistic tools organized at several complexity levels. At the
first level, the basic analysis modules are used to build more
complex modules at higher levels, namely those performing
deep analysis and information extraction. These, in turn, are

This work has been supported by MINECO (TIN2014-54565-JIN, FFI2014-
51978-C2-1-R), MICINN (IJCI-2016-29598), Xunta de Galicia (ED431G/08),
European Regional Development Fund (ERDF), and by two BBVA Foundation
Grants for Researchers and Cultural Creators (2016 and 2017).

1https://www.linguakit.com
2https://github.com/citiususc/Linguakit

module type modules

basic analysis verbal conjugator
sentence segmentation

tokenizer
token splitter

deep analysis lemmatizer
PoS-tagger

entity recognition (NER)
entity classification (NEC)

coreference resolution
dependency-based syntactic analysis

extraction keywords
multiword expressions

sentiment analysis
semantic relations (open IE)

aplications summarization
semantic annotation (entity linking)

concoordancer (key words in context)
language identification

linguistic checker (lexical and grammatical level)

TABLE I: LinguaKit modules organized in four categories.

used to develop applications which tend to become increas-
ingly more complex, such as grammar checking, semantic
annotation, and so on.

The objectives of this article are the following. Firstly, we
will describe the architecture of LinguaKit by pointing out the
strategies used to implement each linguistic module. A more
detailed description can be found in [1]. Secondly, we will
also describe how this architecture has been integrated into
a Big Data environment following the MapReduce paradigm,
giving rise to more efficient versions of the modules.

Beside this introduction, the article is organized as follows.
In Section II, we present a short analysis of related work.
Section III introduces the architecture of the system, and Sec-
tion IV shows different evaluations —already published— of
the performance obtained by some of the modules. Section V
focuses on the integration of the system into a Big Data
infrastructure. The conclusions and future work are addressed
in Section VI.

II. RELATED WORK

This section presents some of the most popular and used
open source suites for Natural Language Processing (NLP),



having in mind the languages that each one of them supports,
together with a brief introduction of different technologies for
Big Data analysis.

A. NLP tools

One of the most popular NLP suites is Stanford
CoreNLP [2], which includes a variety of modules for tokeniz-
ing, PoS tagging, named entity analysis, syntactic parsing, or
coreference resolution. It is written in Java and was developed
initially for English, even though they provide models for
various languages such as Chinese, Spanish, German, or
Arabic.

FreeLing [3] is another NLP software (written in C++)
that includes a similar list to Stanford CoreNLP, but it is
also provided with tools for other tasks such as phonetic
transcription or semantic disambiguation. The largest part of
the modules analyzes the texts in Catalan, Spanish, Portuguese,
Galician, English, French, and most recently, Asturian, Welsh
or Russian (among other languages).

Other NLP module-based systems written in Java (besides
Stanford CoreNLP) are OpenNLP3 and IXA pipes [4], which
are made up of multilingual analysis tasks similar to those
listed above. In Python, Natural Language Toolkit (NLTK)
[5] is a very popular module widely used to teach NLP, while
spaCy4 is mainly used in industrial environments.

With the popularization of the initiative Universal Depen-
dencies, which promotes the unification of the annotation
guidelines in different languages, researchers have come to
develop some compelling tools, such as UDPipe [6]. UDPipe
includes machine learning modules for tokenization, PoS tag-
ging, lemmatization, and syntactic analysis.

In addition to the different systems introduced above, Citius-
Tools is also worth mentioning [7]. CitiusTool is an NLP suite
from which some LinguaKit modules were developed. Unlike
the above-mentioned systems, which mainly offer analysis
modules, LinguaKit is also provided with a wide range of
extraction tools, as well as more complex applications based
on these extraction systems.

B. Big Data technologies

MapReduce [8] is a programming model introduced by
Google for processing and generating large data sets on a huge
number of computing nodes. A MapReduce program execution
is divided into two main phases: map and reduce. The input
and output of a MapReduce computation is a list of key-value
pairs. Users only need to focus on implementing map and
reduce functions. In the map phase, map workers take as input
a list of key-value pairs and generate a set of intermediate
output key-value pairs, which are stored in the intermediate
storage (i.e., files or in-memory buffers). The reduce function
processes each intermediate key and its associated list of
values to produce a final dataset of key-value pairs. In this way,
map tasks achieve data parallelism, while reduce tasks perform

3http://opennlp.apache.org/
4https://spacy.io

parallel reduction. Currently, several processing frameworks
support this programming model.

Apache Hadoop [9] is the most successful open source im-
plementation of the MapReduce programming model. Hadoop
consists of three main layers: a data storage layer (HDFS),
a resource manager layer (YARN), and a data processing
layer (Hadoop MapReduce Framework). HDFS is a block-
oriented distributed file system based on the idea that the most
efficient data processing pattern is a write-once, read-many-
times pattern.

Apache Spark [10] was designed to overcome some of
the Hadoop limitations, especially when considering iterative
jobs. It supports both in-memory and on-disk computations
in a fault tolerant manner by introducing the idea of Resilient
Distributed Datasets (RDDs). Apart from running interactively
using Python, Scala and R, Spark can also be linked into
applications in either Java, Python, Scala or R.

Apache Storm [11] is a framework with the aim of process-
ing streaming data in real time. It requires the definition of
topologies, which are computational graphs (workflows) where
every node represents individual processing tasks. An edge
symbolize a data streams that leaves a node and it is used as
input by one or more nodes.

III. ARCHITECTURE OF LINGUAKIT

Figure 1 shows the different modules introduced above in
Table I. This architecture is shared by the four languages
processed by the system. The basic analysis consists of the
segmentation of a text into sentences, which are the input
of the tokenization process. For its part, the tokenized text
is enhanced with basic rules for splitting, which separate the
elements that make up the contractions (e. g., “do → de o”,
in Portuguese and Galician) or sequences of verbs and clitic
pronouns (e.g., “cansarse → cansar se”, in Spanish). This
module is language dependent, as the previous processes are
carried out with a unique tool which uses lists of abbreviations
also dependent on each linguistic variety.

The verb conjugator is an isolated analysis module that takes
as its input a verb in infinitive form in Spanish, Galician or
Portuguese. In this last case, the system can perform up to
four models of verbal conjugation, depending on the variety
(Brazilian or European Portuguese), and also depending on
the orthographic system used (before or after the Orthographic
Agreement of 1990).

Based on the basic analysis modules, two different appli-
cations have been implemented: language identification and
concordances (keywords in context).

The modules of deep analysis take as input the output
of the basic analysis. The first process is lemmatization,
which associates all the possible lemmas and tags to each
token of the input text. The basic lemmatizer relies on a
computational lexicon available for each langusage. Before
the disambiguation process carried out by the PoS tagger, it is
possible to run the process of identifying the named entities
(NER). The entities and proper names identified by the NER
module will be classified after PoS tagging by making use



Fig. 1: Architecture of LinguaKit.

of named entity classification (NEC). The last module of deep
analysis is dependency-based syntactic parsing, which takes as
input PoS tagged text (with or without the previous application
of NER and NEC).

Several tools use the output of the deep analysis mod-
ules to extract information from texts: sentiment analysers
(to perform opinion mining), and extractors of keywords,
multiword expressions, and semantic relationships. All these
extractors take as input the output of the PoS tagging module.
In addition, a lexical and grammatical checker application has
been developed by making use of the output of the syntax
analyzer.

Finally, two applications have been created from the extrac-
tors of relevant terms (keywords and multiword expressions):
an automatic summarizer and a semantic annotator (entity
linking). The latter links the extracted terms to encyclopaedic
concepts framed in external knowledge bases, for example,
DBpedia.5

IV. MODULES

LinguaKit’s main modules have been designed and imple-
mented recently, most of which are described in different
publications. Thus, this section introduces the techniques and
methodologies employed in each of the main modules, as well
as presents a brief summary of the evaluations performed.

A. Preprocessing

As it has been said, the first modules carry out a preprocess-
ing of the text that enables the application the rest of the tools.
Preprocessing modules identify sentence boundaries (based on
finite state automata and lists of abbreviations ending with
punctuation), split blank space elements into tokens (tokeniza-
tion and splitting), and assing one —or more— lemmas to each
token (lemmatization). More detailed descriptions of these
modules can be found in [7].

5http://wiki.dbpedia.org/

B. PoS Tagging

This module disambiguates the Part-of-Speech tags assigned
to each token by means of a Bayesian classifier based on
bigrams of tokens.6 It was evaluated for three languages:
English, Portuguese and Spanish, with results close to the state
of the art: ≈ 96% for Portuguese and Spanish, and slightly
lower (≈ 94%) for English [7], [12].

C. Named Entity Recognition and Classification

The first of these modules identifies numex (numerically
based) and enamex (proper names) expressions by means of
finite state machines, which take into account both the spelling
forms (use of capital letters) and function words (Universidade
de Santiago de Compostela). Once the named entities have
been identified, the classification module applies a distant
supervision method that allows it to classify entities in four
semantic classes: person, organization, local or miscellaneous.
The system takes advantage of lists of already known entities
(gazetteers), and a set of rules that allow us to disambiguate
entities appearing in more than one list (which can be, for
example, person or local). The gazetteers were automatically
extracted from external sources with encyclopaedic knowl-
edge.

This module was evaluated for the four analyzed languages
(English, Portuguese, Spanish and Galician), using different
corpora and being compared with supervised systems [7], [13].
The results obtained —aside from the fact that they are not
always directly comparable— were close to those of FreeLing
and Stanford CoreNLP, clearly surpassing the models available
for OpenNLP.

D. Coreference Resolution

Another module for linguistic analysis included in Lin-
guaKit is coreference resolution at entity level. This mod-
ule uses as input a text with the above mentioned entities

6It also disambiguates lemmas whose assignment may vary according to
the PoS tag assigned to the token. E.g., the English form beginning may be
assigned the lemma begin —if it is a verb—, or beginning —if it is a noun.



classified semantically, and applies a sieve-based determin-
istic strategy by means of which it allocates a numerical
identifier to each one of the occurrences (mentions) of the
previously analyzed entities. Ideally, this identifier will be the
same for each of the mentions that refer to the same entity
of the discourse (e.g., “Ricardo Carvalho CaleroPERSON 1”,
“DenisPERSON 2”, “Denis SuárezPERSON 2”, “RicardoPERSON 1”,
“SuárezPERSON 2”, . . . ). This module is a simplified version of
the system presented in [14].

In addition, this module also includes an alternative output
that takes advantage of coreference resolution to try to correct
previous errors of the semantic classification. This way, if
the given form “Calero” has been previously classified as
local, but identified as a mention of the same entity as “Ri-
cardo Carvalho Calero”, the semantic tag of the first mention
would be corrected and replaced by person [15].

E. Dependency-Based Syntactic Analysis

The module of syntatic analysis, called DepPattern, is based
on formal rules of dependencies and an algorithm of parsing
with finite-state techniques. It was evaluated for Portuguese
and Spanish and compared to MaltParser [16], a corpus-driven
determinist transition parser. The results obtained by DepPat-
tern on test corpora built from texts from different domains
were similar to those obtained by MaltParser: ≈ 82% F-
score [17]. In [18] we describe the main characteristics of the
formal grammar on which DepPattern’s linguistic knowledge
is based. A compiler transforms the formal rules, written with
the principles of dependency grammar, into Perl scripts that
are actually dependency-based syntactic parsers.

F. Sentiment Analysis

The sentiment analysis system (also known as opinion
mining), classifies a sentence as having a positive, negative
or neutral opinion. The core of this module is a Bayesian
classifier trained with texts which had been previously an-
notated with opinions, and also uses a polarity lexicon and
syntatic rules for identifying linguistic markers that intensify
or change the polarity of words. It was evaluated for English
and Spanish by the participation in two shared tasks focused
on the analysis of opinions in social networks: TASS 2013 [19]
for Spanish, and SemEval-2014 [20] for English, showing a
competitive performance in both languages.

G. Relation Extraction

This module consists of a system for extracting unsuper-
vised information whose objective is to obtain an open set of
relationships between two objects. The relations (or triples:
obj1, relation, obj2) selected by a system of open information
extraction (OIE) represent the basic propositions stated by the
input text. Our system, argOE [21], is a rule-based tool which
takes as input a text analyzed in syntactic dependencies (in
CoNLL-X format). It was evaluated in English, Portuguese and
Spanish, and compared with OIE systems focused on single-
language extraction. The module, which has been included in
LinguaKit, improves the results of many systems to which it

was compared, such as ReVerb [22]. However, the F-score of
our module for English is lower than that obtained by ClausIE
[23], another symbolic system whose input is the syntactic
analysis provided by Stanford CoreNLP.

H. Entity Linking

This module identifies the relevant terms of the text that
can be linked to concepts present in external data bases, such
as DBpedia. This task, usually known as entity linking (EL),
consists of relating the terms mentioned in the text with the
concepts of an ontological and encyclopaedic database. Our
system uses as external resources some relations of DBpedia
and a new knowledge base automatically constructed with a
distributional similarity method adapted to the textual entries
of Wikipedia [24]. The Portuguese and English versions were
evaluated giving rise to similar results to state-of-the-art EL
systems, such as DBpedia Spotlight [25].

I. Grammar Checker

LinguaKit’s linguistic correction system is so far only
available as an experimental module in the web version.7

This tool was developed mainly for Galician, language for
which the system was evaluated by comparing its automatic
corrections with manual assessments made by teachers on
student texts [26]. The system includes several modules that
identify and classify different types of common errors in
Galician learners. This includes not only spelling mistakes,
but also lexical (Spanish loanwords, hypercorrections, etc.) and
syntactic (gender and number agreement, clitic position, use
of prepositions, etc.) errors.

Besides Galician language, LinguaKit also provides basic
versions for Portuguese and Spanish, but these two versions
require a greater development concerning linguistic resources
such as lists of error types, or syntactic rules for the identifi-
cation and classification of errors.

J. Other Tools

In addition to the referred tools, LinguaKit also includes
the following applications: extractors of (i) keywords, (ii)
multiwords and (iii) keywords in context (concordance), as
well as (iv) a verb conjugator, and (v) a summarizer.

• Keyword Extraction. The keyword extractor tool selects
those lexical terms that are relevant in the text. Keywords
are relevant common nouns, proper nouns (single units
or compounds), adjectives, and verbs. Except proper
nouns, which can be expressions constituted by several
words (e.g. “United Kingdom”, “Celta de Vigo”, etc), the
keywords extracted by our module are just monolexical
words. The extraction method is carried out in two
phases: selection of candidates and ranking by relevance.
In order to define the concept of relevance, we go through
the notion of termhood, that is to say, the degree to
which the linguistic unit is related to specific concepts in
the domain of the text [27]. We compute relevance as a

7https://linguakit.com/es/supercorrector



statistical weight resulting from comparing the frequency
of the candidates keywords in the given text (observed
data) with the frequency of those keywords in a reference
corpus (expected data). More precisely, the weight of a
word is the chi-square value computed on the basis of
observed and expected data. Finally, the system selects
the N first terms ranked by relevance, being N a value
parameterizable by the user.

• Multiword Extraction. The multiword extractor selects
relevant terms coded as plurilexical units. For in-
stance, natural language processing, language tech-
nology, syntactic analysis can be relevant multiwords
within a text focused on NLP issues. The extrac-
tion method is also carried out in two phases: selec-
tion of candidates and ranking by relevance. To se-
lect candidates, we use a set of PoS tagger patterns
(e.g. Noun-Preposition-Noun, Adjective-Noun, Noun-
Preposition-Adjective-Noun, etc.). This method is similar
to that described in work on terminology extraction [28].
In the second phase, in order to rank by relevance, we
use the concept of unithood, which refers to the degree
of force and cohesion between the lexical units that
make up the compound [27]. The degree of internal
cohesion is computed by means of lexical measures. In
LinguaKit, the user is required to choose among five
different measures: (a) chi-square, (b) loglikehood, (c)
mutual information, (d) simmetric conditional probability,
and (e) simple co-occurrences.

• Summarizer. The summarizer extracts the most relevant
phrases or sentences from the input text. It uses several
modules, namely sentence segmentation, tokenization,
PoS tagging, keyword extraction and multiword extrac-
tion. The main strategy is to use the extraction modules
so as to weight sentences according to relevance score.
From the weighted list of sentences, the user chooses the
percentage of text she wants to extract from the original
one in order to build the final abstract.

Together with the above modules, the system also offers
more basic but useful modules for different tasks: concor-
dances, language identification, and verb conjugation [29].

V. INTEGRATION OF LINGUAKIT IN A BIG DATA
INFRASTRUCTURE

In NLP and other research areas many applications are
developed using scripting languages such as Perl or Python. In-
terpreters are generally slow, which makes scripting languages
prohibitive for implementing large data and CPU-intensive
applications. As a consequence, Big Data technologies fit
in a natural way as solution for processing huge amounts
of data in reasonable time. Nowadays the de facto standard
frameworks for parallel processing of Big Data are Apache
Hadoop and Apache Spark engines. Even though code de-
veloping in Hadoop and Spark is largely simplified with their
characteristics as the automatic input splitting, task scheduling
or fault tolerance mechanism, to write a Java or Scala program
for those frameworks is not straightforward. In addition, users

0 5 10 15 20 25

17.9

18.3

23.6

Time (minutes)

Java (Spark)
Java (Hadoop)
Perl (Hadoop)

1 10 20 30 40 50 60

63.1

62.2

48.2

Speedup

Java (Spark)
Java (Hadoop)
Perl (Hadoop)

Fig. 2: Performance of the PoS Tagger considering different
Big Data engines when processing the complete Wikipedia on
a cluster: execution time (left) and speedup (right).

might not be familiar with the languages natively supported
by Hadoop and Spark. We must take into account that porting
Perl applications to Java or Scala is a really difficult task
since the differences between these languages are huge. Both
Big Data engines provide mechanisms based on system pipes
to call external applications written in any programming
language, but at the expense of important degradations in the
performance with respect to using Java or Scala codes [30].
To overcome those problems we have previously developed
PERLDOOP2 [31], a Big Data-oriented Perl-Java source-to-
source compiler. Note that the unique task required by the
PERLDOOP2 users is tagging the Perl source code using a
reduced number of labels in such a way that no knowledge
about Java is necessary.

We have integrated all the previously described LinguaKit
modules in Hadoop and Spark frameworks following the
MapReduce paradigm. Two approaches were considered. In
the first case, the original Perl modules play the role of Map
functions taking advantage of the mechanisms provided by
Hadoop (Hadoop Streaming) to use codes written in languages
different than Java. In the second approach, the source code
of the LinguaKit modules was tagged in order to use the
PERLDOOP2 compiler. As a result, all the modules were
automatically translated to Java in such a way that they were
ready to use in Hadoop and Spark as Map functions.

To illustrate the benefits of integrating LinguaKit in a Big
Data infrastructure we have considered as example the PoS
tagger module. Figure 2 shows the time required to process
the complete English Wikipedia (2.1 billion tokens, August
2015 dump) on a cluster using the parallelization approaches
commented previously. The speedup with respect to the orig-
inal sequential Perl module is also provided. The experiments
were carried out on a Big Data cluster installed at the Super-
computing Center of Galicia (CESGA), which consists of 64
nodes. Each node has an Intel Xeon E5520 processor and 1
GB of RAM memory. The Hadoop and Spark versions 1.1.2
and 2.0, while Java and Perl versions are 1.8.0 and 5.10.1
respectively. We must highlight that the original PoS tagger
spends 19 hours to process the Wikipedia. However, that time
is noticeably reduced to only 23.6 minutes when using Hadoop
with the Perl modules. The reduction goes further when using
the Java modules generated by PERLDOOP2. In that case, only



18.3 and 17.9 minutes are necessary when considering Hadoop
and Spark, respectively. In other words, we are PoS tagging
the Wikipedia 62.2× and 63.1× faster than using the original
LinguaKit module.

On the other hand, the sentiment analysis module of Lin-
guaKit is the core of Polypus [32], which is a horizontal-
scalable Big Data architecture for real-time sentiment analysis
on microblogging posts. It is composed by several mod-
ules and it has the following functionalities and characteris-
tics: (1) massive text extraction from Twitter, (2) distributed
non-relational storage optimized for time range queries, (3)
memory-based intermodule buffering, (4) real-time sentiment
classification (with Storm), (5) near real-time keyword senti-
ment aggregation in time series (with Spark), (6) an HTTP API
to interact with the platform and (7) a web interface to analyze
results visually. The whole architecture is self-deployable and
based on Docker containers.

VI. CONCLUSIONS AND FUTURE WORK

This article presents LinguaKit, a Big Data-based linguistic
package that allows users to have easy and unified access
to a wide range of linguistic analysis modules. The set of
tools provided by the package is larger than that available in
most linguistic toolkits, and is able to meet many of the needs
required by language professionals and users. To this respect,
as a future work we intend, on the one hand, to continue to
improve the performance of some of the analysis modules,
and on the other hand, to expand the number of modules with
new functions, such as phonetic and phonological transcription
systems, or document classification. In addition, it is also
planned to adapt the modules of PoS tagging and syntactic
analysis to their compatibility with the annotation guidelines
using Universal Dependencies.

REFERENCES

[1] P. Gamallo and M. Garcia, “Linguakit: uma ferramenta multilingue para
a análise linguı́stica e a extração de informação,” Linguamática, vol. 9,
no. 1, 2017.

[2] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proc. of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, 2014, pp. 55–60.

[3] L. Padró, “Analizadores Multilingües en FreeLing,” Linguamática,
vol. 3, no. 2, pp. 13–20, 2011.

[4] R. Agerri, J. Bermudez, and G. Rigau, “IXA pipeline: Efficient and
Ready to Use Multilingual NLP tools,” in Proc. of the 9th Int. Conf. on
Language Resources and Evaluation, 2014.

[5] S. Bird, E. Loper, and E. Klein, Natural Language Processing with
Python. O’Reilly Media Inc., 2009.

[6] M. Straka, J. Hajič, and Straková, “UDPipe: Trainable Pipeline for
Processing CoNLL-U Files Performing Tokenization, Morphological
Analysis, POS Tagging and Parsing,” in Proc. of the 10th Int. Conf.
on Language Resources and Evaluation (LREC), 2016, pp. 4290–4297.

[7] M. Garcia and P. Gamallo, “Yet another suite of multilingual NLP tools,”
in Languages, Applications and Technologies, ser. Communications in
Computer and Information Science, 2015, vol. 563, pp. 65–75.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in 6th Symposium on Operating System Design and
Implementation, 2004.

[9] Apache Hadoop, http://hadoop.apache.org, [Online; accessed June,
2018].

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. of the 2nd
USENIX Conf. on Hot Topics in Cloud Computing, 2010, pp. 10–10.

[11] Apache Storm, https://storm.apache.org/, 2018, [Online; accessed June,
2018].

[12] P. Gamallo, J. C. Pichel, M. Garcia, J. M. Abuı́n, and T. Fernández-
Pena, “Análisis morfosintáctico y clasificación de entidades nombradas
en un entorno Big Data,” Procesamiento del Lenguaje Natural, vol. 53,
pp. 17–24, 2015.

[13] P. Gamallo and M. Garcia, “A resource-based method for named entity
extraction and classification,” in Portuguese Conference on Artificial
Intelligence (EPIA), ser. Progress in Artificial Intelligence. Lecture Notes
in Computer Science (LNCS/LNAI), 2011, vol. 7026, pp. 610–623.

[14] M. Garcia and P. Gamallo, “An Entity-Centric Coreference Resolution
System for Person Entities with Rich Linguistic Information,” in Proc.
of COLING, 2014, pp. 741–752.

[15] M. Garcia, “Incorporating Lexico-semantic Heuristics into Coreference
Resolution Sieves for Named Entity Recognition at Document-level,”
in Proc. of the 10th Language Resources and Evaluation Conference,
2016, pp. 3357–3361.

[16] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler, S. Marinov,
and E. Marsi, “Maltparser: A language-independent system for data-
driven dependency parsing,” Natural Language Engineering, vol. 13,
no. 2, pp. 115–135, 2007.

[17] P. Gamallo, “Dependency parsing with compression rules,” in Interna-
tional Workshop on Parsing Technology (IWPT), 2015, pp. 107–117.

[18] P. Gamallo and I. González, “A Grammatical Formalism Based on
Patterns of Part-of-Speech Tags,” International Journal of Corpus Lin-
guistics, vol. 16, no. 1, pp. 45–71, 2011.

[19] P. Gamallo, M. Garcia, and S. Fernández-Lanza, “TASS: A Naive-
Bayes strategy for sentiment analysis on Spanish tweets,” in Proc. of the
Workshop on Sentiment Analysis, 2013, pp. 126–132, XXIX Congreso de
la Sociedad Española de Procesamiento del Lenguaje Natural (SEPLN).

[20] P. Gamallo and M. Garcia, “Citius: A Naive-Bayes Strategy for Senti-
ment Analysis on English Tweets,” in Proc. of the 8th Int. Workshop on
Semantic Evaluation (SemEval), 2014, pp. 171–175.

[21] ——, “Multilingual Open Information Extraction,” in 17th Portuguese
Conf. on Artificial Intelligence, (EPIA), ser. Progress in Artificial Intel-
ligence. Lecture Notes in Computer Science. Springer-Verlag, 2015,
vol. 9273, pp. 711–722.

[22] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam, “Open
information extraction: the second generation,” in Proc. of the Int. Joint
Conference on Artificial Intelligence (IJCAI), vol. 11, 2011, pp. 3–10.

[23] L. D. Corro and R. Gemulla, “ClausIE: Clause-Based Open Information
Extraction,” in World Wide Web Conference, 2013, pp. 355–366.

[24] P. Gamallo and M. Garcia, “Entity Linking with Distributional Seman-
tics,” in Computational Processing of the Portuguese Language, ser.
LNAI. Springer-Verlag, 2016, vol. 9727, pp. 177–188.

[25] P. N. Mendes, M. Jakob, A. Garcı́a-Silva, and C. Bizer, “DBpedia
Spotlight: Shedding Light on the Web of Documents,” in 7th Int. Conf.
on Semantic Systems, 2011, pp. 1–8.

[26] P. Gamallo, M. Garcia, I. del Rı́o, and I. González López, “Avalingua:
Natural Language Processing for Automatic Error Detection,” in Learner
Corpora in Language Testing and Assessment. Studies in Corpus Lin-
guistics, 2015, vol. 70, pp. 35–58.

[27] K. Kageura and B. Umino, “Methods of automatic term recognition: A
review,” Terminology, vol. 3, no. 1, pp. 259–289, 1996.

[28] D. Sánchez and A. Moren, “A methodology for knowledge acquisition
from the web,” Journal of Knowledge-Based and Intelligent Engineering
Systems, vol. 10, no. 6, pp. 453–475, 2006.

[29] P. Gamallo, M. Garcia, I. González, M. M. noz, and I. del Rı́o, “Learning
verb inflection using Cilenis conjugators,” The Eurocall Review, vol. 21,
no. 1, pp. 12–19, 2013.

[30] M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, and M. Guo, “More convenient
more overhead: the performance evaluation of Hadoop streaming,” in
ACM Symp. on Research in Applied Computation, 2011, pp. 307–313.

[31] C. Piñeiro, J. M. Abuı́n, and J. C. Pichel, “Perldoop2: A Big Data-
Oriented Source-to-Source Perl-Java Compiler,” in Proc. of the IEEE
Int. Conf. on Big Data Intelligence and Computing, 2017, pp. 933–940.

[32] R. Martı́nez-Castaño, J. C. Pichel, and P. Gamallo, “Polypus: a Big
Data Self-Deployable Architecture for Microblogging Text Extraction
and Real-Time Sentiment Analysis,” CoRR, vol. abs/1801.03710, 2018.


