Tutorial of DepPattern

How to write a grammar with DepPattern

January 2009

Contents

1 DepPattern: Description of the Formalism

1.1 Basicdescription L
1.2 Types of dependencies
1.3 List of PoS tags and list of morpho-syntactic features.
1.4 Description of Patterns. L
1.5 How rules are applied
1.6 Environments without the Uniqueness Principle o . oo vt ...
1.7 More optional operatorso
1.8 Lexical CIASSES . . . o o oo v oo
1.9 Begin and end of sentences e

‘2 Examples of Usd

2.1 A sample Grammar
2.2 Using DepPattern to Correct the PoS Tagged Input Text
2.3 Function Unicity Lo
2.4 DepPattern and Pattern Grammar L.

3 Further Information
‘3.1 Contribution§

Chapter 1

DepPattern: Description of the
Formalism

1.1 Basic description

DepPattern is a formalism to write dependency grammars. The DepPattern compiler, called
Compi, generates robust parsers from DepPattern grammars. The use of the DepPattern compiler
is described in the user guide. It has been brought under the GNU General Public License.

A specific DepPattern grammar is constituted by a set of context dependent rules. Every rule
is aimed to identify a specific dependent-head relation by means of a pattern of Parts-of-Speech
tags. A rule is constituted by two elements:

e a pattern of PoS tags

e the name of a head-dependent relation found within the pattern

Let’s see an example:

Adjunct : ADJ NOUN
%

The first element is "Adjunct", which stands for the name of a dependency relation. Any
name can be used for any dependency, only if it was previously declared in the corresponding
configuration file (see Section [1.2). The second element is a sequence of PoS tags, which we call
"pattern". A pattern must consist of, at least, two tags: the one representing the dependent
expression and the other representing the head. Names for tags are declared in the corresponding
configuration file (see Section .

Both, the dependency name and the pattern are separated by two dots (:). Symbol % represents
the end of the rule. It is always possible to make use of regular expression operators to tune any
character or string : 7,[|*, [* |, etc.

1.2 Types of dependencies

1.2.1 Main Types

DeptPattern allows a linguist to define the number of dependencies he/she considers they are nec-
essary to build the grammar. If a new dependency is required, he/she must open the configuration
file and write a new line with the name of the dependency and its type. DepPattern defines 2
basic types of dependencies:

http://gramatica.usc.es/pln/tools/user_guide.pdf

2 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

e A syntactic dependency between two words (a head and a dependent), for instance, the
adjunct relation between a noun and an adjective. We call it open-choice dependency.

e A lexicon-syntactic relationship between two words, for instance, the relation between the
english verb "switch" and the particle "off", which is a syntactic relation giving rise to a
new lexical entry, namely the verb "switch off". This type of dependency is called idiom
dependency of lexical dependency. They also produce syntactic relations between lexical
units, but, in addition, a new lexical unit is generated by modifying the lemma of the head.

Each basic dependency type has two subtypes according to the relative position of the head
and the dependent: the dependent can be either to the left (dependent-head) or to the right of the
head (head-dependent). An unlimited number of words can be inserted between both the head
and the dependent. So, considering information on word order, the grammar contains 4 different
types of dependencies:

DepHead An open-choice dependency where the dependent is to the left of the head. For instance
"big monster". The adjective is a left adjunct of the noun.

HeadDep An open-choice dependency where the dependent is to the right of the head. For
instance "eat (red) meat". The noun is the direct object appearing to the right of the verb.
In this example, there is an inserted adjective between the verb and the noun.

DepHead lex A lexical dependency where the dependent (or particle) is to the left of the head
(or main word). For instance "se arrodilla". The particle "se" is to the left of the reflexive
verb.

HeadDep lex A lexical dependency where the dependent (or particle) is to the right of the head
(or main word). For instance "switch (the light) off". The particle "off" is to the right of
the verb.

1.2.2 Further types
Dependencies containing a lexical relation

To symplify some linguistic analyses, DepPattern also allows to define dependencies between two
words (a head and a dependent) where the syntactic relation between them is lexicalized. In this
cases, there is a third gramatical word used as dependency relator. For instance, we can consider
that the expression "man with glasses" contains a open-choice dependency between "man" and
"glasses" marked by prepostion "with", which is here a kind of binary relator. Obviously, such an
expression can also be represented in a more standard way, by means of two basic dependencies
(“with” and “glasses”, “man” and “with”). Likewise, the expression “if it rains, I go” can contain an
open-choice dependency between “rains” and “go”, linked by the conjunction “if”. These are called
complex open-choice dependencies.

It would be possible to also find examples of complex lexical dependencies. For instance, “have
to eat” could be analysed as an idiomatic dependency between “have” and “eat”, related by means
of particle “to”. However, these dependency types are not implemented in the current version of
the DepPattern compiler.

The types implemented are the following complex open-choice dependencies:

e DepRelHead
e HeadRelDep
e DepHeadRel

HeadDepRel
e RelDepHead

1.2. TYPES OF DEPENDENCIES 3

e RelHeadDep

Complex dependencies are, in fact, constituted by single binary dependencies. They can be
used as syntactic-semantic short-cuts in order to simplify the analysis.

Unary relationship

The types of dependencies described above are used to identify word dependencies. However,
DepPattern also permits to identify a PoS tagg in context to make different operations on it:
morpho-syntactic corrections, addition of semantic or pragmatic information, modification of some
features, etc. For this purpose, we defined a unary relation type: 'Head’. In Section [2.2 of this
tutorial, we show an example of how this type of relation is used to solve systematic PoS tagging
errors. In addition, in Section[2.3, it is used to set function unicity.

Summary

So, in sum, DepPattern contains 11 types: 2 simple open-choice binary dependencies, 2 simple
lexical binary dependencies, 4 complex open-choice binary dependencies, and 1 unary relationship.
In further versions, we’ll implement the 6 complex lexical dependencies left.

1.2.3 The configuration file: ’"dependencies.conf’

Dependency names and their types are declared in the configuration file "dependencies.conf". The
number of specific dependencies is open, that is, the user is free to declare the number of depen-
dencies he/she consider being appropriate to define the grammar. Every dependency must belong
to one of the 10 types defined above. Each line of the configuration file consists of two columns:
the first column contains the name of a dependency, whereas the second column contains its type.
Let’s see an example:

AdjunctLeft DepHead
AdjunctRight HeadDep
SpecifierLeft DepHead
SpecifierRight HeadLeft
SubjectLeft DepHead
SubjectRight HeadDep
DObjectLeft DepHead

DObjectRight HeadDep
PrepComplLeft DepRelHead
PrepComplRight HeadRelDep

As word order is involved in the defintion of dependency types, we need to take into account
the relative position of the two words (dependent and head) when we associate a name to a spe-
cific dependency. In the example above, we do not use simple names such as Adjuncts, Specifiers,
Subjects, etc. Each dependency is assigned two complementary names. On the one hand, Ad-
junctLeft, SpecifierLeft, Subjectleft,. .. stand for dependencies in which the dependent word occurs
at the left position with regard to the head. On the other hand, AdjunctRight, SpecifierRight,
SubjectRight,. . . represent dependencies where the dependent is at the right. However the user is
free to choose whatever name for his/her dependencies. The example above is just a proposal.
The only requirement the user must fill is to assign only one particular type to each dependency
name.

4 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

1.3 List of PoS tags and list of morpho-syntactic features

1.3.1 Tagset

The tagset depends on the system used to tag the input text. For instance, the tagset of the
English Tree-Tagger is different from that of the Spanish Tree-Tagger, which is different from that
of the Spanish Freeling, etc. However, the parser uses as input the output of a tool whose aim is
to convert the main PoS tags of all those taggers into a shared list of tags. The shared list is the
following: ADJ (adjective), ADV (adverb), NOUN (noun), PRP (preposition), CARD (cardinal
number), CONJ (conjunction), DT (determiner), PRO (pronoun), VERB (verb), I (interjection),
and 25 more tags for punctuation marks. In addition, there are still some PoS tags belonging to
only one tagger. For instance, the English tree-tagger also contains specific tags such as: PoS (’s),
PCLE (particle), EX (existential ’there’), etc.

The configuration file where the names of tags are declared is called tagset.conf. Each line con-
tains two columns. The second column contains the names of tags actually used by the system.
These names correspond to both the list of PoS tags shared by all PoS taggers, and those PoS
tags which are specific to each PoS tagger. The first column shows the names chosen by the user
to build the grammar. The user is free to use whatever name. All regular PoS tags are written
with upper-case letters. Let’s see an example:

ADJECTIVE ADJ
ADVERB ADV

PREP PRP
C CONJ
NUMBER CARD
DET DT
NOUN NOUN
PRON PRO
\Y% VERB
INT I

POS POS
PCLE PCLE

It is also possible to create short-cuts using regular expressions, such as:

X [A-Z]+

NOTVERB ["V|["E|-+

PUNCT Fla-z]+
Variable X stands for whichever tag name, NOTVERB for whatever tag except those contain-
ing the string VE (like VERB), and PUNCT all tags containing the string F followed by some

lower-case letters (i.e., punctuation marks). To define more specific shorcuts, we can also use the
dysjunction operation “|:

NOMINAL PRON|NOUN

Tags of punctuation marks

Finally, the special tags representing punctuation marks are in Table

Tag SENT is used to represent the end of a sentence. Three symbols are asigned the tag
SENT: “”, “? and “I”. A sentence is a string between two SENT tags. Patterns are defined
within sentences. Up to know, DepPattern does not allow to define rules involved more than one
sentence.

1.4. DESCRIPTION OF PATTERNS)

. SENT
? SENT
! SENT
i Faa

, Fc

[Fca

] Fct

: Fd
n Fe

/ Fh
i Fia
{ Fla
} Flt
(Fpa
) Fpt
« Fra
» Frt
... Fs
% Ft

; Fx
+ Fz
— Fz
= Fz

Table 1.1: List of tags representing punctuation marks.

1.3.2 List of morpho-syntactic features

PoS tags are enriched by means of a closed set of morpho-syntactic features. All PoS tags have,
at least, three features: “token”, “lemma”, and “pos” (position). The values of these two features
are provided by the PoS tagger given a particular word. For instance, if the word “eggs” was
tagged as NOUN in the third position of the sentence, the features “token”, “lemma”, and “pos”

TN

will be assigned the values “eggs”, “egg”, and “2”, respectively (note that the first position is “0”).
In addition, each PoS tag has its own set of features. Tables 1.2, 1.4, [1.6, 1.8, 1.9
1.10, and[I.11, show the specific features (first column) for each tag, including the possible values
for each feature (second column). The meaning of each value is described in the third column. To
symplify the description, the tables below do not show the null value or “0”, which is automatically
assigned to a feature when the current PoS tagger does not provide such a specific information.

Unfortunately, many PoS taggers used by the parser provide non-zero values for many fea-
tures. The exception is Freeling for Spanish, Galician, and Portuguese, which contains all morpho-
syntactic information required by the parser.

1.4 Description of Patterns

1.4.1 Basic Patterns

Given a rule, a pattern of PoS tags is a sequence of tags used to identify a specific dependency. A
Pattern must fill the following requirements:

e It must contain, at least, those tags that are involved in the dependency: both the head and
the dependent. Complex dependencies (HeadRelDep, DepRelHead, etc.) also need a third
element: the relator.

CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

features | values | description
type Q qualifying
(@) ordinal
degree A Aumentative
S Superlative
gender M masculine
F feminine
number S singular
P plural
function P participle

Table 1.2: List of features and values for tag ADJ (adjectives).

features | values | description
type G general
N negative

Table 1.3: List of features and values for tag ADV (adverbs).

features | values | description
type demonstrative
possessive
interrogative
exclamative
indefinite
article
first
second
third
masculine
feminine
neutral
singular
plural
invariable
singular
plural

person

gender

number

possessor

HwZdwnzZzHEwn—E—~0H4d"d

Table 1.4: List of features and values for tag DT (determinants).

1.4. DESCRIPTION OF PATTERNS

features | values | description
type C common

P proper name
gender M masculine

F feminine
number S singular

P plural
person 1 first

2 second

3 third

Table 1.5: List of features and values for tag NOUN (nouns).

features | values | description
type main
auxiliary
semiauxiliary
indicative
subjunctive
imperative
infinitive
gerund
participle
present
imperfect
future
past
conditional
first
second
third
singular
plural
invariable
masculine
feminine

mode

tense

person

number

gender

HEZTnww =lQund—9UuIRZEn—~n>=Z

Table 1.6: List of features and values for tag VERB (verbs).

CHAPTER 1.

DEPPATTERN: DESCRIPTION OF THE FORMALISM

features

values

description

type

demonstrative
personal
interrogative
exclamative
indefinite
possessive
relative
wh-word

person

first
second
third

gender

masculine
feminine
neutral

number

singular
plural
invariable

possessor

singular
plural

case

nominative

accusative
dative
oblique

’ politeness \

HogsZTwZzUtwnZzHEwn RS HX—~03 "0

polite ‘

Table 1.7: List of features and values for tag PRO (pronouns).

features | values | description
type C coordinating
S subordinating

Table 1.8: List of features and values for tag CONJ (conjunctions).

values
(no values)

features
(no features)

description ‘

Table 1.9: List of features and values for tag I (interjections).

features
type

values | description
P preposition

Table 1.10: List of features and values for tag PRP (prepositions).

1.4. DESCRIPTION OF PATTERNS 9

features | values | description
gender M masculine

F feminine
number S singular

P plural
person 1 first

2 second

3 third

Table 1.11: List of features and values for tag CARD (cardinals).

e It may contain contextual tags, which will be enclosed in square brackets: [|].

e Any contextual tag can be tunned with standard wildcards representing optionality, iteration,
etc., that is, well known operators used by languages based on regular expressions.

The following examples are Patterns that fill the requirements of DepPattern:

ADJ NOUN

[DT] ADJ NOUN

DT [X]* NOUN

VERB [ADV]* [DT]* [ADJ]* NOUN
VERB [DT]+ NOUN

VERB [DT]? NOUN

NOUN PRP [DTJ* [ADJ]* NOUN

- -[DT] ADV VERB

VERB NOUN -[PRP]

The first pattern describes an adjective immediately followed by a noun. Both tags are involved
in a simple dependency. The second pattern represents the same situation, but in this case there
is a contextual determiner which is not involved in the dependency. The third pattern stands
for a simple dependency constituted by a determiner followed by a noun and, optionally, by an
unlimited number of different tags between them. The inserted tags are not involved in the
dependency: they build the context. Tag X is a shortcut defined in the configuration file (see
Section[1.3). The fourth pattern represents a simple dependency between a verb and a noun with
three optional tags beween them building the context. The context is constituted by 0 or more
adverbs, derterminers and adjectives. The fifth pattern represents the same simple dependency
but, in this case, the context is not optional: there must be one or more determiners between
the verb and the noun. The sixth pattern is similar to the previous one. The difference is that
the contextual determiner is optional: there must be 0 or 1 determiner. The seventh pattern
represents a complex syntactic dependency between three elements: a noun, a preposition and
another noun. There are two optional contextual tags between the preposition and the second
noun: 0 or more determiners and 0 or more adjectives. So, wildcards such as *, +, or ? have their
standard meaning in regular expressions. The two last patterns contain negative contexts. The
8th pattern introduces a negative context at the left side of the rule. It matches any ADV VERB
combination if only if there is no DT to the left. The last one introduces a negative context at
the right side. It matches any VERB NOUN combinaion followed of a tag different from PRP.

1.4.2 Patterns with features

Each PoS tag in a pattern may contain morpho-syntactic and/or lexical information. This in-
formation is represented by a feature-value structure, noted as a pair <feature:value>. Let’s see
some examples:

10 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

ADV<lemma:very> ADV
PRO<type:R> VERB

The first pattern represents a dependency between two adverbs, one of them is associated to the
lemma “very”. This is a lexical restriction. The second pattern represents a dependency between
a pronoun and a verb. The pronoun is characterized by means of the type “R(elative)”. This is
a morpho-syntactic restriction. Both lexical and morpho-syntactic restrictions are represented by
means of feature-value structures. In the example above, “lemma” and “type” are features, while
“very” and “R” are their specific values.

One of the main advantages of DepPattern is that features are only used when they are neces-
sary. Given a PoS tag, all those features that are not specified in a pattern are considered to have
value 0.

1.4.3 Patterns with boolean operators

It is possible to define more complex patterns using boolean operators: |means disjunction (OR),
and & means conjunction (AND). Operator | can be used for tags, for features, and for values of
features. However, for practical reasons, operator & is only used for features. It cannot be used
for feature values because, by definition, two different values of a feature are mutually exclusive.
In addition, patterns are not required to use it since they alredy presuppose the meaning of tag
conjunction. Let’s see some examples:

ADV <lemma:very|quite|rather> ADV|ADJ
PRO<lemma:that&type:Q> VERB
VERB< (mode:S)|(tense:P)> NOUN
The first pattern introduces two “|” operators. The first one represents a disjunction among
three possible values (“very”, “quite”, and “more”) of the feature “lemma”. The second one is
an operator on tags: it allows to choose between either an adverb or an adjective. The second
pattern introduces the “&” operator between two features that must be filled simultaneously: to be
a relative pronoun (R), and to be lexicalized by means of “that”. Finally, in the third pattern, there
is a disjunction between two different verbal features. Let’s note that disjunctions on features by
means of the operator | requires the use of brackets: “(featurel:valuel)|(feature2:value2)”.
The number of arguments of both | and & is unlimited. When combining the two operators
(only with features), & must be always within the scope of |. Below, we show some well formed
expressions in DepPattern:

Tagl < (featurel:valuel)|(feature2:value2&feature3:value3) >
Tagl < (featurel:valuel&feature2:value2)|(feature3:value3) >

Let a, b, and ¢ be 3 features. All possible combination of these 3 features with the 2 boolean
operators are represented as follows:

DepPattern representation Standard bracketed representation

(a)|(b&c) (a|(b&c))
(adeb)|(c) ((a&eb)|c)
(a&ec)|(b&c) ((alb)&c)
(a&b)|(ake) (a&(blc))

The first column shows well-formed DepGrammar expressions while the second one depicts the
corresponding expressions using a more compact representation. In the standard representation,
brackets are used to delimit the scope of the operator. DepPattern representation is not so compact
but is easy to read.

1.5. HOW RULES ARE APPLIED 11

1.5 How rules are applied

As we have said before, a rule must contain, at least, the following elements:

dependency name : PATTERN
%

A grammar is a list of rules. A rule is applied on a tagged expression (input) if the PATTERN
provided by the rule matches a sequence of tags within the expression. The application of a
rule consistis in identifying a specific syntactic dependency between two tags (boht the head and
dependent) belonging to the pattern.

Rules are applied sequencially in an iterative process. Most rules change the input of the next
rules to be applied (this will be described in the following subsections). The process stops when no
rule can be applied. However, the linguist can choose an algorithm where iteration is precluded.
The parsing algorithm without iteration consists in applying rules sequencially; the process stops
when the parser achieves the last rule to be applied. In order to set up the restrictive algorithm
without iteration, see the user guide| (Section 'Extensions’, Subsection "Precluding Iteration’).

1.5.1 Uniqueness Principle

A rule not only identifies a dependency between two words, it also removes the dependent
word from the current expression that is being analysed. The modified expression will be
the input of the following rule. So, rules are applied sequencially and modify the input of the next
rule to be applied. Such a modification is justified by the Uniqueness principle of Dependency
Grammar.

Let’s suppose that we build a simple grammar with the following two rules:

AdjunctLeft : ADJ NOUN
%

SpecLeft : DT NOUN

%

Let’s analyse the expression “a beautiful mountain”. The input string of the parser would be
like this:

a_ DT <..> beautiful ADJ <...> mountain NOUN <..>

The first rule is applied on this string and finds the “ADJ NOUN” pattern. This finding allows
the rule to identify the adjunct dependency between “beautiful” and “mountain”. But the rule also
removes the adjective (which is the dependent expression) from the string that will be the input
the following rule. So, the second rule will be applied on this new input:

a DT <..> mountain NOUN <..>

It finds the “DT NOUN?” pattern and then the dependency between “a” and “mountain”. In
addition, it removes the determiner from the input string. The head “mountain” is the only
expression to be analysed in further applications of rules.

According to the “Uniqueness principle”, a dependent word only has one head. So, if we identify
a dependency relation containing a dependent word which is no more the head of any word, then it
means that we have alredy found all dependencies associated to that word and it can be removed
from the search space. The fact of removing one by one the dependents from the input string
allows us to reduce in a systematic way the search space, which consists of a huge variety of
possible patterns of tags.

Considering Uniqueness, the following constraint is required to write well-formed DepPattern
grammars:

Constraint 1: The dependent tag of a rule musn’t be involved in further rules. In other words,
before writing a rule, we must write before all those rules containing heads instanciated by
the dependent tag of the current rule.

http://gramatica.usc.es/pln/tools/user_guide.pdf

12 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

1.5.2 Uniqueness Principle and contextual tags

When contextual PoS tags are used to define a pattern, it is necessary to take into account
whether the contextual tags are or not syntactically related to the dependent tag of the pattern.
For instance, take this rule:

AdjunctLeft : [DT]? [ADV]? ADJ NOUN
%

The contextual tags, [ADV] and [DT], have significant differences. While [ADV] is syntactically
related to the adjective, which is the dependent, [DET] is linked to the noun, the head of the
dependency. So, if this rule is applied, it will not be possible to identify later the dependency
between the adverb and the adjective, given that the adjective has already been removed from the
input string. However, as [DT] is related to the head, the dependency between DT and NOUN
can be identfied later by using the corresponding rule.

In order to identify as many dependencies as possible, the grammar should contain rules with
contextual tags that are not related to the dependent. Otherwise, some possible dependencies will
be missed.

So considering the Uniqueness principle and the contextual tags, the user must take into
account the following constraint to build well-formed DepPattern grammars:

Constraint 2: No contextual tag must be related to the dependent tag of a rule.

1.6 Environments without the Uniqueness Principle

Constraints 1 and 2 stated above are directly related to the Uniqueness Principle of the Dependency
Grammar. However, according to some linguistic theories (e.g. Word Grammar), such a principle
seems to be too strong, since it does not permit to deal with some specific linguistic phenomena.
In order to properly analyse such phenomena, it would be useful to write complex rules without
taking into account Uniqueness and then the two constraints stated above. DepPattern allows two
special environments within which both constraints are not applied: ’blocs of rule’ and operator
"NoUniq’

1.6.1 Blocks of rules

The first environment without Uniqueness Principle is called a “Block of rules” (or “Block”). De-
pendent nodes are only removed at the end of the Block.
The syntax of a Block is the following:

Rule-1
NEXT
Rule-2
NEXT

Rule-N
%

A Block allows two different tasks: on the one hand, it identifies as many dependencies as rules
it contains, and on the other, it removes the dependent tags only after having applied all rules
of the Block. So, it identifies the main head of the Block, i.e., the only tag that does not play
the role of dependent in any rule. Let’s see an example. Take the expression “movie that I see”,
transformed in the following string:

1.7. MORE OPTIONAL OPERATORS 13

movie NOUN_<..>that PRO <..>1 PRO_ <..>see VERB <..>
To analyze this expression, we propose the following Block of 3 rules:

DObjectLeft : [NOUN] PRO<type:R> [PRO<type:P>] VERB

NEXT

SubjectLeft : [NOUN] [PRO<type:R>] PRO<type:P> VERB
NEXT

AdjunctRight : NOUN [PRO<type:R>] [PRO<type:P>] VERB
%

Each rule identifies a specific dependency. The first one identifies the direct object relation
between the relative pronoun “that” and the verb “see”. The second rule identifies the personal
pronoun “I” as being the subject of the verb. And the third rule links the nominal antecedent
(“movie”) with the verb of the relative clause (“see”), which is its right adjunct. As the noun
is the main head of the Block, the other dependent constituents are removed. The removal of
all dependents is only performed at the end of the Bloc. So, there is no kind of removal when
processing the previous rules.

The rule where the main head of the Block actually plays the role of head (so, it is not a
context tag) must be the last one of the bloc. Otherwise, it would be difficult to identify the main
head.

1.6.2 NoUniq environment

If the linguist wishes to define a rule without removing the dependent node, he/she can use the
NoUniq operator. For instance:

DirectObjectR : VERB NOUN
NoUniq
%

This rule does not remove the NOUN tag from the search space.
It is also possible to define a rule where both “head” and “dependent” are removed. For this
purpose, the “Remove” operator was defined:

DirectObjectR : VERB NOUN
Remove

%

This rule removes both the VERB and NOUN tags from the search space.

1.7 More optional operators

Rules can be enriched with 4 additional operators: Recursivity, Agreement, Add, and Inherit.

1.7.1 Recursivity

In some cases, a rule or grammatical structure requires to be applied several times to deal with
with recursive expressions such as, for instance, “nice red car”. In this expressions the noun “car” is
modified by two adjectives in the same way. DepPattern can deal with this phenomenon in several
ways: using a block of rules, applying twice the same rule, or using the operator “Recursivity”.
The 3 possible representations are the following:

Block of rules:

14 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

AdjunctLeft : [ADJ] ADJ NOUN
NEXT

AdjunctLeft : ADJ [ADJ] NOUN
%

Repetition of the same rule:

AdjunctLeft : ADJ NOUN
%
AdjunctLeft : ADJ NOUN
%

Recursivity operator:

AdjunctLeft : ADJ NOUN
Recursivity: 1

%

“Recursivity” is specified by numeric values: “1” means that the rule must be applied twice.
By default, the value is 0, that is a rule is applied only once. This operator permits to specifiy
the number of times a rule can be applied. It allows both a more compact representation and an
easier control of rule recursivity.

1.7.2 Agreement

In some cases, both the head and dependent require to share the same values for some of their
features. For instance, in Romance languages, the adjective must agree with the noun in both
gender and number. Once more, we can represent agreement in different ways. To allow analysing
expressions such as “coche rojo” or “coches rojos”, and not incorrect ones like “*coche roja” or
“*coches rojo”, we can make use of a very encumbered representation with 4 rules:

AdjunctLeft : ADJ<number:S&gender:M> NOUN <number:S&gender:M>
Z)djunctLeft : ADJ<number:S&gender:F> NOUN <number:S&gender:F >
Z)djunctLeft : ADJ<number:P&gender:M> NOUN <number:P&gender:M >
gfdjunctLeft : ADJ<number:P&gender:F> NOUN<number:P&gender:F >
0

However, DepGrammar also allows using the operator “Agreement” which take as arguements
the features involved in the agreement operation:

AdjunctLeft : ADJ NOUN
Agreement: gender, number

%

1.7.3 Add

In some cases, it could be useful to either add a new feature-value to the head or modify the value
of one of its features. These two operations can be performed by making use of operator “Add”.
For instance, the list of morpho-syntactic features used by DepPattern does not contain the verb
property “voice”. The operator allows to introduce a new feature specifying the voice of the head
verb (passive or active) after having applied a grammatical rule. For instance, consider a pattern

1.7. MORE OPTIONAL OPERATORS 15

identifying a semi-auxiliary verb (dependent) occurring to the left of a past partiple verb, its head
(as in the expression “was eaten”). Operator “Add” can be used to assign the passive voice to the
head verb:

SpecifierLeft: VERB<type:S> VERB<mode:P>
Add: voice:passive

%

This new morpho-syntactic information, introduced by a grammatical rule, can be used as the
input in further rule applications. Notice that Add can be very useful to correct systematic errors
made by the tagger, since it also allows modifying values of existing features.

1.7.4 Inherit

The Inherit operator takes a list of features as input, identifies the values of the dependent expres-
sion and assigns them to the corresponding features of the head. That means that this operation
allows the head to inherit the values of some features of the dependent. This operation can be
used to deal with verbal periphrases. It allows to transfert the morphological properties of a light
verb to the content verb (only if the latter is considered the head). For instance, let’s assume
that there is a rule analysing “had to work” as a dependency between “have” (the dependent) and
“work” (the head), via preposition “to” (the relator):

PeriphrasisLeft: VERB<lemma:have> PRP<lemma:to> VERB
Inherit: mode, tense

%

The Inherit operetor transfers the past tense information from “had” to “work”, which is the head
of the expression. Let’s note that the fact of considering “work” as the head of the dependency is
only one of the possible syntactic representations.

1.7.5 Operators within blocks of rules

Recursivity cannot be applied to the individual rules of a block. Instead, it is applied on the whole
block when the operator is placed after the last rule.

Agreement can be applied on the individual rules of a block. Concerning the use of this
operator, there are no differences between rules within a bloc and regular rules.

Add and Inherit only can be applied on the last rule of a block. The reason is that these
operators are aimed to modify the features of a head and a block only returns the main head.

1.7.6 Summary of operators

The list of operators DepPattern allows the linguist to use are the following:
NoUnique It does not remove the dependent tag. It has no arguments
Remove It removes both the head and the dependent. It has no arguments

Recursivity It applies a rule a number N of times before applying the following rule. It has one
argument: an integer.

Agreement It requires the dependent and the head to share the same values with regard to a
list of features. It has one argument: a list of features.

Add It adds a new feature-value to the head. If the feature already exists, it only modifies the
value of the existing feature. It has one argument: a list of feature-value pairs.

16 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM
Inherit It allows the head to inherit some values from the dependent. It has one argument: a
list of features (those from the the head inherit the values).

Corr It enables changing PoS tags using a unary relation (type “Head”). It will described latter
in Section [2.2.

1.8 Lexical Classes

DepPattern is also provided with a configuration file, called “lexical _classes.conf”, containing word
sets likely to be used in any rule. Let’s see an example: instead of using directly in a rule all those
possible lemmas considered as adverbial quantifiers, it is more economical to declare a lexical class,
called for instance “$Quant”, instanciated by the corresponding lexical units:

$Quant = very quite more less
$Quant is a lexical variable likeky to be used in whatever rule. For instance, the rule

AdjunctLeft : ADV<lemma:$Quant> ADJ
%

states that there is an adjunct dependency between an adverb belonging to the lexical class $Quant
and any adjective at its right.

Any set of words, even a huge list learnt automatically from a corpus, can become a lexical
class.

1.9 Begin and end of sentences

To describe patterns taking into account the first tag of sentences, it will be possible to use the
restriction <pos:0>. For instance:

SubjL : PRO<pos:0> VERB

%
This rule is applied when the subject pronoun is the first element of the sentence (position =
0).
It is also possible to use symbol “ " ” to represent a head that has no dependent elements to

its left (apart from the dependents inserted in the pattern). For instance:

SubjL : * NOUN|PRO VERB
%

That means there is only a NOUN or a PRO linked to the verb as a left dependent. There are
not other complements or modifiers linked to the verb in the sentence appearing to the left of the
nominal subject.

It is also possible to use the attribute “pos” to represent any position of a tag. For instance,
<pos:3> represents the forth position of a tag.

Finally, the end of a sentence can be represented by tag SENT. For instance:

SubjR : [PRO<lemma:how>] [ADJ<lemma:old>] VERB<lemma:be> NOUN|PRO
SENT<lemma:/?>
%o

This rule represents the reverted subject relation within a interrogative sentence such as “how
old are you?”.

Chapter 2

Examples of Use

2.1 A sample grammar
To give an idea of how a DepPattern grammar can be built, let’s propose the following set of rules:

AdjunctRight : VERB ADV
Recursivity: 1

%

AdjunctLeft : ADV VERB
Recursivity: 1

%o

AdjunctLeft : ADJ NOUN
Recursivity: 1

Agreement: number, gender

%

AdjunctLeft : DT NOUN
Recursivity: 1

Agreement: number, gender

%

SubjLeft : NOUN|PRO VERB
Agreement: number, person

%

DObjRight : VERB NOUN|PRO
%

This small grammar is able to correctly analyse expressions such as “fast cars”, whose output
analysis (with flag -a) is the following:

SENT: :<fast_ADJ_O_<number:0|function:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>
cars_NOUN_1_<number:P|lemma:car|gender:0|person:3|type:C|token:cars|> ._SENT>

(AdjnL;car_NOUN_1;fast_ADJ_0)

Fim do parsing...
“a nice fast car’

SENT: :<a_DT_O_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:al>
nice_ADJ_1_<number:0|function:0|degree:0|lemma:nice|gender:0|type:0|token:nicel>
fast_ADJ_2_<number:0|function:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>
car_NOUN_3_<number:S|lemma:car|gender:0|person:3|type:Cltoken:car|> ._SENT>

17

18 CHAPTER 2. EXAMPLES OF USE

(SpecL;car_NOUN_3;a_DT_0)
(AdjnL;car_NOUN_3;nice_ADJ_1)
(AdjnL;car_NOUN_3;fast_ADJ_2)

Fim do parsing...
“all the nice fast cars”™

SENT: :<all_DT_O_<number:0|lemma:all|possessor:0|gender:0|person:0|type:0|token:all|>
the_DT_1_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:thel|>
nice_ADJ_2_<number:0|function:0|degree:0|lemma:nice|gender:0|type:0|token:nicel>
fast_ADJ_3_<number:0|function:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>
cars_NOUN_4_<number:P|lemma:car|gender:0|person:3|type:C|token:cars|> ._SENT>

(SpecL;car_NOUN_4;all_DT_0)
(SpecL;car_NOUN_4;the_DT_1)
(AdjnL;car_NOUN_4;nice_ADJ_2)
(AdjnL;car_NOUN_4;fast_ADJ_3)

Fim do parsing...
“all the fast cars run fast™

SENT: :<all_DT_O_<number:0|lemma:all|possessor:0|gender:0|person:0|type:0|token:all|>
the_DT_1_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>
nice_ADJ_2_<number:0|function:0|degree:0|lemma:nice|gender:0|type:0|token:nice|>
fast_ADJ_3_<number:0|function:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>
cars_NOUN_4_<number:P|lemma:car|gender:0|person:3|type:Cltoken:cars|>
run_VERB_5_<number:0|mode:0|lemma:run|gender:0|tense:0|person:0|type:0|token:run|>
fast_ADV_6_<degree:0|lemma:fast|token:fast|> ._SENT>

(SpecL;car_NOUN_4;all_DT_0)
(SpecL;car_NOUN_4;the_DT_1)
(AdjnL;car_NOUN_4;nice_ADJ_2)
(AdjnL;car_NOUN_4;fast_ADJ_3)
(SubjL;run_VERB_5;car_NOUN_4)
(AdjnR;run_VERB_5;fast_ADV_6)

Fim do parsing...
“Bill bought a fast car”:

SENT: : <Bill_NOUN_O_<number:S|person:3|type:C|lemma:bill|token:Bill|gender:0|>
bought_VERB_1_<number:0|mode:0|lemma:buy|gender:0|tense:S|person:0|type:0|token:bought|>
a_DT_2_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:al>
fast_ADJ_3_<number:0|function:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>
car_NOUN_4_<number:S|lemma:car|gender:0|person:3|type:Cltoken:car|> ._SENT>

(SubjL;buy_VERB_1;bill_NOUN_O)
(SpecL;car_NOUN_4;a_DT_2)
(AdjnL;car_NOUN_4;fast_ADJ_3)
(DobjR;buy_VERB_1;car_NOUN_4)

Fim do parsing...

2.2. USING DEPPATTERN TO CORRECT THE POS TAGGED INPUT TEXT 19

“the rich man bought yesterday a nice fast car”

SENT: : <the_DT_O_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>
rich_ADJ_1_<number:0|function:0|degree:0|lemma:rich|gender:0|type:0|token:rich|>
man_NOUN_2_<number:S|lemma:man|gender:0|person:3|type:C|token:man|>
bought_VERB_3_<number:0|mode:0|lemma:buy|gender:0|tense:S|person:0|type:0|token:bought|>
yesterday_ADV_4_<degree:0|lemma:yesterday|token:yesterday|>
a_DT_5_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:al>
nice_ADJ_6_<number:0|function:0|degree:0|lemma:nice|gender:0|type:0|token:nicel>
fast_ADJ_7_<number:0|function:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>
car_NOUN_8_<number:S|lemma:car|gender:0|person:3|type:Cltoken:car|> ._SENT>

(SpecL;man_NQOUN_2;the_DT_0)
(AdjnL;man_NOUN_2;rich_ADJ_1)
(SubjL;buy_VERB_3;man_NOUN_2)
(AdjnR;buy_VERB_3;yesterday_ADV_4)
(SpecL;car_NOUN_8;a_DT_5)
(AdjnL;car_NOUN_8;nice_ADJ_6)
(AdjnL;car_NOUN_8;fast_ADJ_7)
(DobjR;buy_VERB_3;car_NOUN_8)

Fim do parsing...
“he really wants another car”.

SENT: : <he_PRO_O_<number:0|lemma:he|possessor:0|case:0|gender:0|person:0|politeness:0
|type:P|token:he|>

really_ADV_1_<degree:0|lemma:really|token:really|>
wants_VERB_2_<number:0|mode:0|lemma:want |gender:0|tense:P|person:3|type:0|token:wants|>
another_DT_3_<number:0|lemma:another|possessor:0|gender:0|person:0|type:0|token:another|>
car_NOUN_4_<number:S|lemma: car|gender:0|person:3|type:C|token:car|> ._SENT>

(SubjL;want_VERB_2;he_PRO_0)
(AdjnL;want_VERB_2;really_ADV_1)
(SpecL;car_NOUN_4;another_DT_3)
(DobjR;want_VERB_2;car_NOUN_4)

Fim do parsing...

Rules can be ordered in different ways, since they fill the basic constraints stated berore in
this tutorial. However, to be efficient, a DepPattern grammar should be written by cascades
of rules representing linguistic layers or modules. An optimal grammar should contain first rules
concerning adverb phrases, then adjective phrases, then nominal phrases, and finally verb phrases.

2.2 Using DepPattern to Correct the PoS Tagged Input Text

DepPattern is provided with tools suited to correct errors of the input PoS tagged text. DepPattern
allows a linguist to elabore syntactic rules in order to correct systematic mistakes made by the
PoS tagger. For this purpose, we are provided with 3 new elements:

e A new type of dependency, “Head”, which represents a unary relation (arity 1). In the default
configuration file, dependencies.conf, we declared one type unary relation, called “Single”.

e A new operation, “Corr”, whose aim is to correct all information associated to a lexical unit:
type of PoS tag and morpho-syntactic features. It is similar to the operation “Add”. The
main difference is that “Corr” allows to change the PoS tag itself.

20 CHAPTER 2. EXAMPLES OF USE

e A new output format obtained using flag -c. Instead of generating as output the dependency
triplets identified by the grammar (flag -a), we can use flag -c¢ to rewrite the same input, but
containing all corrections made by operations such as “Corr”, or “Inherit”, or “Add”.

Let’s see an example. Suppose that the PoS tagger systematically tag as a subordinate con-
junction the word that following a noun, even if in this context that is, in general, a relative
pronoun. To solve the problem, we can write a rule as follows:

Single : [NOUN] CONJ<lemma:that&type:S>
Corr: tag:PRO, type:R
%

This way, the information introduced by the operator “Corr” is used to change the head ex-
pression of the unary relation “Single”. It substitutes tag PRO and type R for the information
contained in the head (tag CONJ and type S). More precisely, this rule identifies as head a subor-
dinate conjunction with lemma that following a noun (its context), and transform this head entry
into a relative pronoun. Notice that there there is no dependent expression involved in the rule,
since the relation type of “Single” is Head.

“Corr” also allows correcting attibutes by using the values of other attributes:

Corr: lemma:=—token

It means that the value of the lemma is the value of the token. In other words, the lemma
attribute inherits the value of the token attribute.

2.3 Function Unicity

The type of dependency “Head” can also be used to take into account the principle of function
unicity. This principle states that a verb only contains one main function: one Subject, one Direct
Object, and one Indirect Object. So, the grammar should prevent of applying the corresponding
rules more than once. To do it, we propose the following strategy. First, we define the following
rule:

Single : VERB
Add: subj:0, dobj:0, iobj:0
%

This means that every verb is provided with 3 new attribute-value pairs (subj:0, dobj:0, and
iobj:0), which represent the fact that a verb these 3 functions have not been found yet. Then, all
definitions of rules used to identify these functions should contain the following information:

SubjL : NOUN VERB<subj:0>
Add: subj:1
%

This rule is applied only if the verb has not another subject. Then, the attribute ’subj’ is
assigned value 1. Then, this rule cannot be applied again.

2.4 DepPattern and Pattern Grammar

DepPattern is a formalism combining notions of both Dependency Grammar and Pattern Gram-
mar.

The main aim of Pattern Grammar is to identify meaningful patterns associated to words. The
meaningful patterns of a word can be defined as all the words and structures which are regularly
associated with the word and which contribute to its meaning. A meaninful pattern is identified if

2.4. DEPPATTERN AND PATTERN GRAMMAR 21

a combination of words occurs relatively frequently, if it is dependent on a particular word choice,
and if there is a clear meaning associated with it. One of the most relevant assumpations of Pattern
Grammar is that there is no a clear boderline between both syntactic and lexical structures.
A very simple formalism is used to represent meaningful patterns of words in Pattern Grammar.
For instance, the meaningful patterns of the verb “explain” would be represented as follows:
Vn (explain all the different types)

V wh (explained how it worked)

V about n (explain about the barman)
Vonton (she explained it to you)

V that (she explained that she never paid)
V ton (Alex explained to me)

V to n that (have to explain to their patients that they...)

Where V stands for the lexical item to be represented (in this case “explain”), symbols 'n’,
*wh’, ’that’ stands for 'noun group’, ’clause introduced by a wh-word’, and ’clause introduced by
that’, respectively. Finally, to and about are other lexical items being part of a pattern.

DepPattern is provided with the approppriate tools to represent and identify meaningful pat-
terns of lexical words. In order to identify such meaningful patterns in DepPattern, we need to
introduce dependency relationships between words instead of phrasal groups. The specific Dep-
Pattern rules written to identify the meaningful patterns of “explain” could be the following:

Vn DobjR: VERB<lemma:explain> NOUN
V wh ObjL: [VERB<lemma:explain>] PRO<type:W> [X]* VERB
NEXT

DObjR: VERB<lemma:explain> [PRO<type:W>| [X]* VERB
V about n PrepCompR: VERB<lemma:explain> PRP<lemma:about> NOUN
Vnton DobjR: VERB<lemma:explain> NOUN [PRP<lemma:to>] [NOUN]
NEXT
PrepCompR VERB<lemma:explain> [NOUN| PRP<lemma:to> NOUN
V that SpecL: [VERB<lemma:explain>| CONJ<lemma:that> [X]|* VERB
NEXT
DObjR VERB<lemma:explain> [CONJ<lemma:that>| [X]* VERB
V ton PrepCompR: VERB<lemma:explain> PRP<lemma:about> NOUN
V to n that SpecL: [VERB<lemma:explain>| [PRP <lemma:to>| [NOUN]
CONJ<lemma:that> [X]* VERB
NEXT
PrepCompR: VERB<lemma:explain> PRP<lemma:to> NOUN
[CONJ<lemma:that>] [X]* [VERB]
NEXT
DobjR: VERB<lemma:explain> [PRP<lemma:to>| [NOUN]
[CONJ<lemma:that>] [X]* VERB

These rules should be located at the begining of the verbal phrase layer, and following adverb,
adjective, and nominal rules.

22

CHAPTER 2. EXAMPLES OF USE

Chapter 3

Further Information

3.1 Contributions

Pablo Gamallo Otero and Isaac Gonzélez

Grupo Processamento da LAyngua NaTural (ProLNaT)
University of Santiago de Compostela

Galiza, Spain

pablo.gamalloQusc.es

23

	DepPattern: Description of the Formalism
	Basic description
	Types of dependencies
	List of PoS tags and list of morpho-syntactic features
	Description of Patterns
	How rules are applied
	Environments without the Uniqueness Principle
	More optional operators
	Lexical Classes
	Begin and end of sentences

	Examples of Use
	A sample grammar
	Using DepPattern to Correct the PoS Tagged Input Text
	Function Unicity
	DepPattern and Pattern Grammar

	Further Information
	Contributions

