
Tutorial of DepPattern

How to write a grammar with DepPattern

January 2009

Contents

1 DepPattern: Desription of the Formalism 1

1.1 Basi desription . 1

1.2 Types of dependenies . 1

1.3 List of PoS tags and list of morpho-syntati features 4

1.4 Desription of Patterns . 5

1.5 How rules are applied . 11

1.6 Environments without the Uniqueness Priniple . 12

1.7 More optional operators . 13

1.8 Lexial Classes . 16

1.9 Begin and end of sentenes . 16

2 Examples of Use 17

2.1 A sample grammar . 17

2.2 Using DepPattern to Corret the PoS Tagged Input Text 19

2.3 Funtion Uniity . 20

2.4 DepPattern and Pattern Grammar . 20

3 Further Information 23

3.1 Contributions . 23

i

Chapter 1

DepPattern: Desription of the

Formalism

1.1 Basi desription

DepPattern is a formalism to write dependeny grammars. The DepPattern ompiler, alled

Compi, generates robust parsers from DepPattern grammars. The use of the DepPattern ompiler

is desribed in the user guide. It has been brought under the GNU General Publi Liense.

A spei� DepPattern grammar is onstituted by a set of ontext dependent rules. Every rule

is aimed to identify a spei� dependent-head relation by means of a pattern of Parts-of-Speeh

tags. A rule is onstituted by two elements:

• a pattern of PoS tags

• the name of a head-dependent relation found within the pattern

Let's see an example:

Adjunt : ADJ NOUN

%

The �rst element is "Adjunt", whih stands for the name of a dependeny relation. Any

name an be used for any dependeny, only if it was previously delared in the orresponding

on�guration �le (see Setion 1.2). The seond element is a sequene of PoS tags, whih we all

"pattern". A pattern must onsist of, at least, two tags: the one representing the dependent

expression and the other representing the head. Names for tags are delared in the orresponding

on�guration �le (see Setion 1.3).

Both, the dependeny name and the pattern are separated by two dots (:). Symbol % represents

the end of the rule. It is always possible to make use of regular expression operators to tune any

harater or string : ?,[℄*, [� ℄, et.

1.2 Types of dependenies

1.2.1 Main Types

DeptPattern allows a linguist to de�ne the number of dependenies he/she onsiders they are ne-

essary to build the grammar. If a new dependeny is required, he/she must open the on�guration

�le and write a new line with the name of the dependeny and its type. DepPattern de�nes 2

basi types of dependenies:

1

http://gramatica.usc.es/pln/tools/user_guide.pdf

2 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

• A syntati dependeny between two words (a head and a dependent), for instane, the

adjunt relation between a noun and an adjetive. We all it open-hoie dependeny.

• A lexion-syntati relationship between two words, for instane, the relation between the

english verb "swith" and the partile "o�", whih is a syntati relation giving rise to a

new lexial entry, namely the verb "swith o�". This type of dependeny is alled idiom

dependeny of lexial dependeny. They also produe syntati relations between lexial

units, but, in addition, a new lexial unit is generated by modifying the lemma of the head.

Eah basi dependeny type has two subtypes aording to the relative position of the head

and the dependent: the dependent an be either to the left (dependent-head) or to the right of the

head (head-dependent). An unlimited number of words an be inserted between both the head

and the dependent. So, onsidering information on word order, the grammar ontains 4 di�erent

types of dependenies:

DepHead An open-hoie dependeny where the dependent is to the left of the head. For instane

"big monster". The adjetive is a left adjunt of the noun.

HeadDep An open-hoie dependeny where the dependent is to the right of the head. For

instane "eat (red) meat". The noun is the diret objet appearing to the right of the verb.

In this example, there is an inserted adjetive between the verb and the noun.

DepHead_lex A lexial dependeny where the dependent (or partile) is to the left of the head

(or main word). For instane "se arrodilla". The partile "se" is to the left of the re�exive

verb.

HeadDep_lex A lexial dependeny where the dependent (or partile) is to the right of the head

(or main word). For instane "swith (the light) o�". The partile "o�" is to the right of

the verb.

1.2.2 Further types

Dependenies ontaining a lexial relation

To symplify some linguisti analyses, DepPattern also allows to de�ne dependenies between two

words (a head and a dependent) where the syntati relation between them is lexialized. In this

ases, there is a third gramatial word used as dependeny relator. For instane, we an onsider

that the expression "man with glasses" ontains a open-hoie dependeny between "man" and

"glasses" marked by prepostion "with", whih is here a kind of binary relator. Obviously, suh an

expression an also be represented in a more standard way, by means of two basi dependenies

(�with� and �glasses�, �man� and �with�). Likewise, the expression �if it rains, I go� an ontain an

open-hoie dependeny between �rains� and �go�, linked by the onjuntion �if�. These are alled

omplex open-hoie dependenies.

It would be possible to also �nd examples of omplex lexial dependenies. For instane, �have

to eat� ould be analysed as an idiomati dependeny between �have� and �eat�, related by means

of partile �to�. However, these dependeny types are not implemented in the urrent version of

the DepPattern ompiler.

The types implemented are the following omplex open-hoie dependenies:

• DepRelHead

• HeadRelDep

• DepHeadRel

• HeadDepRel

• RelDepHead

1.2. TYPES OF DEPENDENCIES 3

• RelHeadDep

Complex dependenies are, in fat, onstituted by single binary dependenies. They an be

used as syntati-semanti short-uts in order to simplify the analysis.

Unary relationship

The types of dependenies desribed above are used to identify word dependenies. However,

DepPattern also permits to identify a PoS tagg in ontext to make di�erent operations on it:

morpho-syntati orretions, addition of semanti or pragmati information, modi�ation of some

features, et. For this purpose, we de�ned a unary relation type: 'Head'. In Setion 2.2 of this

tutorial, we show an example of how this type of relation is used to solve systemati PoS tagging

errors. In addition, in Setion 2.3, it is used to set funtion uniity.

Summary

So, in sum, DepPattern ontains 11 types: 2 simple open-hoie binary dependenies, 2 simple

lexial binary dependenies, 4 omplex open-hoie binary dependenies, and 1 unary relationship.

In further versions, we'll implement the 6 omplex lexial dependenies left.

1.2.3 The on�guration �le: 'dependenies.onf'

Dependeny names and their types are delared in the on�guration �le "dependenies.onf". The

number of spei� dependenies is open, that is, the user is free to delare the number of depen-

denies he/she onsider being appropriate to de�ne the grammar. Every dependeny must belong

to one of the 10 types de�ned above. Eah line of the on�guration �le onsists of two olumns:

the �rst olumn ontains the name of a dependeny, whereas the seond olumn ontains its type.

Let's see an example:

AdjuntLeft DepHead

AdjuntRight HeadDep

Spei�erLeft DepHead

Spei�erRight HeadLeft

SubjetLeft DepHead

SubjetRight HeadDep

DObjetLeft DepHead

DObjetRight HeadDep

PrepComplLeft DepRelHead

PrepComplRight HeadRelDep

As word order is involved in the de�ntion of dependeny types, we need to take into aount

the relative position of the two words (dependent and head) when we assoiate a name to a spe-

i� dependeny. In the example above, we do not use simple names suh as Adjunts, Spei�ers,

Subjets, et. Eah dependeny is assigned two omplementary names. On the one hand, Ad-

juntLeft, Spei�erLeft, Subjetleft,. . . stand for dependenies in whih the dependent word ours

at the left position with regard to the head. On the other hand, AdjuntRight, Spei�erRight,

SubjetRight,. . . represent dependenies where the dependent is at the right. However the user is

free to hoose whatever name for his/her dependenies. The example above is just a proposal.

The only requirement the user must �ll is to assign only one partiular type to eah dependeny

name.

4 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

1.3 List of PoS tags and list of morpho-syntati features

1.3.1 Tagset

The tagset depends on the system used to tag the input text. For instane, the tagset of the

English Tree-Tagger is di�erent from that of the Spanish Tree-Tagger, whih is di�erent from that

of the Spanish Freeling, et. However, the parser uses as input the output of a tool whose aim is

to onvert the main PoS tags of all those taggers into a shared list of tags. The shared list is the

following: ADJ (adjetive), ADV (adverb), NOUN (noun), PRP (preposition), CARD (ardinal

number), CONJ (onjuntion), DT (determiner), PRO (pronoun), VERB (verb), I (interjetion),

and 25 more tags for puntuation marks. In addition, there are still some PoS tags belonging to

only one tagger. For instane, the English tree-tagger also ontains spei� tags suh as: PoS ('s),

PCLE (partile), EX (existential 'there'), et.

The on�guration �le where the names of tags are delared is alled tagset.onf. Eah line on-

tains two olumns. The seond olumn ontains the names of tags atually used by the system.

These names orrespond to both the list of PoS tags shared by all PoS taggers, and those PoS

tags whih are spei� to eah PoS tagger. The �rst olumn shows the names hosen by the user

to build the grammar. The user is free to use whatever name. All regular PoS tags are written

with upper-ase letters. Let's see an example:

ADJECTIVE ADJ

ADVERB ADV

PREP PRP

C CONJ

NUMBER CARD

DET DT

NOUN NOUN

PRON PRO

V VERB

INT I

POS POS

PCLE PCLE

It is also possible to reate short-uts using regular expressions, suh as:

X [A-Z℄+

NOTVERB [�V℄[�E℄+

PUNCT F[a-z℄+

Variable X stands for whihever tag name, NOTVERB for whatever tag exept those ontain-

ing the string VE (like VERB), and PUNCT all tags ontaining the string F followed by some

lower-ase letters (i.e., puntuation marks). To de�ne more spei� shoruts, we an also use the

dysjuntion operation �|�:

NOMINAL PRON|NOUN

Tags of puntuation marks

Finally, the speial tags representing puntuation marks are in Table 1.1.

Tag SENT is used to represent the end of a sentene. Three symbols are asigned the tag

SENT: �

'', �?� and �!�. A sentene is a string between two SENT tags. Patterns are de�ned

within sentenes. Up to know, DepPattern does not allow to de�ne rules involved more than one

sentene.

1.4. DESCRIPTION OF PATTERNS 5

. SENT

? SENT

! SENT

½ Faa

, F

[Fa

] Ft

: Fd

" Fe

- Fg

/ Fh

¾ Fia

{ Fla

} Flt

(Fpa

) Fpt

� Fra

� Frt

. . . Fs

% Ft

; Fx

+ Fz

− Fz

= Fz

Table 1.1: List of tags representing puntuation marks.

1.3.2 List of morpho-syntati features

PoS tags are enrihed by means of a losed set of morpho-syntati features. All PoS tags have,

at least, three features: �token�, �lemma�, and �pos� (position). The values of these two features

are provided by the PoS tagger given a partiular word. For instane, if the word �eggs� was

tagged as NOUN in the third position of the sentene, the features �token�, �lemma�, and �pos�

will be assigned the values �eggs�, �egg�, and �2�, respetively (note that the �rst position is �0�).

In addition, eah PoS tag has its own set of features. Tables 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

1.10, and 1.11, show the spei� features (�rst olumn) for eah tag, inluding the possible values

for eah feature (seond olumn). The meaning of eah value is desribed in the third olumn. To

symplify the desription, the tables below do not show the null value or �0�, whih is automatially

assigned to a feature when the urrent PoS tagger does not provide suh a spei� information.

Unfortunately, many PoS taggers used by the parser provide non-zero values for many fea-

tures. The exeption is Freeling for Spanish, Galiian, and Portuguese, whih ontains all morpho-

syntati information required by the parser.

1.4 Desription of Patterns

1.4.1 Basi Patterns

Given a rule, a pattern of PoS tags is a sequene of tags used to identify a spei� dependeny. A

Pattern must �ll the following requirements:

• It must ontain, at least, those tags that are involved in the dependeny: both the head and

the dependent. Complex dependenies (HeadRelDep, DepRelHead, et.) also need a third

element: the relator.

6 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

features values desription

type Q qualifying

O ordinal

degree A Aumentative

S Superlative

gender M masuline

F feminine

number S singular

P plural

funtion P partiiple

Table 1.2: List of features and values for tag ADJ (adjetives).

features values desription

type G general

N negative

Table 1.3: List of features and values for tag ADV (adverbs).

features values desription

type D demonstrative

P possessive

T interrogative

E exlamative

I inde�nite

A artile

person 1 �rst

2 seond

3 third

gender M masuline

F feminine

N neutral

number S singular

P plural

N invariable

possessor S singular

P plural

Table 1.4: List of features and values for tag DT (determinants).

1.4. DESCRIPTION OF PATTERNS 7

features values desription

type C ommon

P proper name

gender M masuline

F feminine

number S singular

P plural

person 1 �rst

2 seond

3 third

Table 1.5: List of features and values for tag NOUN (nouns).

features values desription

type M main

A auxiliary

S semiauxiliary

mode I indiative

S subjuntive

M imperative

N in�nitive

G gerund

P partiiple

tense P present

I imperfet

F future

S past

C onditional

person 1 �rst

2 seond

3 third

number S singular

P plural

N invariable

gender M masuline

F feminine

Table 1.6: List of features and values for tag VERB (verbs).

8 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

features values desription

type D demonstrative

P personal

T interrogative

E exlamative

I inde�nite

X possessive

R relative

W wh-word

person 1 �rst

2 seond

3 third

gender M masuline

F feminine

N neutral

number S singular

P plural

N invariable

possessor S singular

P plural

ase N nominative

A ausative

D dative

O oblique

politeness P polite

Table 1.7: List of features and values for tag PRO (pronouns).

features values desription

type C oordinating

S subordinating

Table 1.8: List of features and values for tag CONJ (onjuntions).

features values desription

(no features) (no values)

Table 1.9: List of features and values for tag I (interjetions).

features values desription

type P preposition

Table 1.10: List of features and values for tag PRP (prepositions).

1.4. DESCRIPTION OF PATTERNS 9

features values desription

gender M masuline

F feminine

number S singular

P plural

person 1 �rst

2 seond

3 third

Table 1.11: List of features and values for tag CARD (ardinals).

• It may ontain ontextual tags, whih will be enlosed in square brakets: [℄.

• Any ontextual tag an be tunned with standard wildards representing optionality, iteration,

et., that is, well known operators used by languages based on regular expressions.

The following examples are Patterns that �ll the requirements of DepPattern:

ADJ NOUN

[DT℄ ADJ NOUN

DT [X℄* NOUN

VERB [ADV℄* [DT℄* [ADJ℄* NOUN

VERB [DT℄+ NOUN

VERB [DT℄? NOUN

NOUN PRP [DT℄* [ADJ℄* NOUN

- -[DT℄ ADV VERB

VERB NOUN -[PRP℄

The �rst pattern desribes an adjetive immediately followed by a noun. Both tags are involved

in a simple dependeny. The seond pattern represents the same situation, but in this ase there

is a ontextual determiner whih is not involved in the dependeny. The third pattern stands

for a simple dependeny onstituted by a determiner followed by a noun and, optionally, by an

unlimited number of di�erent tags between them. The inserted tags are not involved in the

dependeny: they build the ontext. Tag X is a shortut de�ned in the on�guration �le (see

Setion 1.3). The fourth pattern represents a simple dependeny between a verb and a noun with

three optional tags beween them building the ontext. The ontext is onstituted by 0 or more

adverbs, derterminers and adjetives. The �fth pattern represents the same simple dependeny

but, in this ase, the ontext is not optional: there must be one or more determiners between

the verb and the noun. The sixth pattern is similar to the previous one. The di�erene is that

the ontextual determiner is optional: there must be 0 or 1 determiner. The seventh pattern

represents a omplex syntati dependeny between three elements: a noun, a preposition and

another noun. There are two optional ontextual tags between the preposition and the seond

noun: 0 or more determiners and 0 or more adjetives. So, wildards suh as *, +, or ? have their

standard meaning in regular expressions. The two last patterns ontain negative ontexts. The

8th pattern introdues a negative ontext at the left side of the rule. It mathes any ADV VERB

ombination if only if there is no DT to the left. The last one introdues a negative ontext at

the right side. It mathes any VERB NOUN ombinaion followed of a tag di�erent from PRP.

1.4.2 Patterns with features

Eah PoS tag in a pattern may ontain morpho-syntati and/or lexial information. This in-

formation is represented by a feature-value struture, noted as a pair <feature:value>. Let's see

some examples:

10 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

ADV<lemma:very> ADV

PRO<type:R> VERB

The �rst pattern represents a dependeny between two adverbs, one of them is assoiated to the

lemma �very�. This is a lexial restrition. The seond pattern represents a dependeny between

a pronoun and a verb. The pronoun is haraterized by means of the type �R(elative)�. This is

a morpho-syntati restrition. Both lexial and morpho-syntati restritions are represented by

means of feature-value strutures. In the example above, �lemma� and �type� are features, while

�very� and �R� are their spei� values.

One of the main advantages of DepPattern is that features are only used when they are nees-

sary. Given a PoS tag, all those features that are not spei�ed in a pattern are onsidered to have

value 0.

1.4.3 Patterns with boolean operators

It is possible to de�ne more omplex patterns using boolean operators: |means disjuntion (OR),

and & means onjuntion (AND). Operator | an be used for tags, for features, and for values of

features. However, for pratial reasons, operator & is only used for features. It annot be used

for feature values beause, by de�nition, two di�erent values of a feature are mutually exlusive.

In addition, patterns are not required to use it sine they alredy presuppose the meaning of tag

onjuntion. Let's see some examples:

ADV<lemma:very|quite|rather> ADV|ADJ

PRO<lemma:that&type:Q> VERB

VERB<(mode:S)|(tense:P)> NOUN

The �rst pattern introdues two �|� operators. The �rst one represents a disjuntion among

three possible values (�very�, �quite�, and �more�) of the feature �lemma�. The seond one is

an operator on tags: it allows to hoose between either an adverb or an adjetive. The seond

pattern introdues the �&� operator between two features that must be �lled simultaneously: to be

a relative pronoun (R), and to be lexialized by means of �that�. Finally, in the third pattern, there

is a disjuntion between two di�erent verbal features. Let's note that disjuntions on features by

means of the operator | requires the use of brakets: �(feature1:value1)|(feature2:value2)�.

The number of arguments of both | and & is unlimited. When ombining the two operators

(only with features), & must be always within the sope of |. Below, we show some well formed

expressions in DepPattern:

Tag1<(feature1:value1)|(feature2:value2&feature3:value3)>

Tag1<(feature1:value1&feature2:value2)|(feature3:value3)>

Let a, b, and c be 3 features. All possible ombination of these 3 features with the 2 boolean

operators are represented as follows:

DepPattern representation Standard braketed representation

(a)|(b&c) (a|(b&c))
(a&b)|(c) ((a&b)|c)
(a&c)|(b&c) ((a|b)&c)
(a&b)|(a&c) (a&(b|c))

The �rst olumn shows well-formed DepGrammar expressions while the seond one depits the

orresponding expressions using a more ompat representation. In the standard representation,

brakets are used to delimit the sope of the operator. DepPattern representation is not so ompat

but is easy to read.

1.5. HOW RULES ARE APPLIED 11

1.5 How rules are applied

As we have said before, a rule must ontain, at least, the following elements:

dependeny_name : PATTERN

%

A grammar is a list of rules. A rule is applied on a tagged expression (input) if the PATTERN

provided by the rule mathes a sequene of tags within the expression. The appliation of a

rule onsistis in identifying a spei� syntati dependeny between two tags (boht the head and

dependent) belonging to the pattern.

Rules are applied sequenially in an iterative proess. Most rules hange the input of the next

rules to be applied (this will be desribed in the following subsetions). The proess stops when no

rule an be applied. However, the linguist an hoose an algorithm where iteration is preluded.

The parsing algorithm without iteration onsists in applying rules sequenially; the proess stops

when the parser ahieves the last rule to be applied. In order to set up the restritive algorithm

without iteration, see the user guide (Setion 'Extensions', Subsetion 'Preluding Iteration').

1.5.1 Uniqueness Priniple

A rule not only identi�es a dependeny between two words, it also removes the dependent

word from the urrent expression that is being analysed. The modi�ed expression will be

the input of the following rule. So, rules are applied sequenially and modify the input of the next

rule to be applied. Suh a modi�ation is justi�ed by the Uniqueness priniple of Dependeny

Grammar.

Let's suppose that we build a simple grammar with the following two rules:

AdjuntLeft : ADJ NOUN

%

SpeLeft : DT NOUN

%

Let's analyse the expression �a beautiful mountain�. The input string of the parser would be

like this:

a_DT_<...> beautiful_ADJ_<...> mountain_NOUN_<...>

The �rst rule is applied on this string and �nds the �ADJ NOUN� pattern. This �nding allows

the rule to identify the adjunt dependeny between �beautiful� and �mountain�. But the rule also

removes the adjetive (whih is the dependent expression) from the string that will be the input

the following rule. So, the seond rule will be applied on this new input:

a_DT_<...> mountain_NOUN_<...>

It �nds the �DT NOUN� pattern and then the dependeny between �a� and �mountain�. In

addition, it removes the determiner from the input string. The head �mountain� is the only

expression to be analysed in further appliations of rules.

Aording to the �Uniqueness priniple�, a dependent word only has one head. So, if we identify

a dependeny relation ontaining a dependent word whih is no more the head of any word, then it

means that we have alredy found all dependenies assoiated to that word and it an be removed

from the searh spae. The fat of removing one by one the dependents from the input string

allows us to redue in a systemati way the searh spae, whih onsists of a huge variety of

possible patterns of tags.

Considering Uniqueness, the following onstraint is required to write well-formed DepPattern

grammars:

Constraint 1: The dependent tag of a rule musn't be involved in further rules. In other words,

before writing a rule, we must write before all those rules ontaining heads instaniated by

the dependent tag of the urrent rule.

http://gramatica.usc.es/pln/tools/user_guide.pdf

12 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

1.5.2 Uniqueness Priniple and ontextual tags

When ontextual PoS tags are used to de�ne a pattern, it is neessary to take into aount

whether the ontextual tags are or not syntatially related to the dependent tag of the pattern.

For instane, take this rule:

AdjuntLeft : [DT℄? [ADV℄? ADJ NOUN

%

The ontextual tags, [ADV℄ and [DT℄, have signi�ant di�erenes. While [ADV℄ is syntatially

related to the adjetive, whih is the dependent, [DET℄ is linked to the noun, the head of the

dependeny. So, if this rule is applied, it will not be possible to identify later the dependeny

between the adverb and the adjetive, given that the adjetive has already been removed from the

input string. However, as [DT℄ is related to the head, the dependeny between DT and NOUN

an be ident�ed later by using the orresponding rule.

In order to identify as many dependenies as possible, the grammar should ontain rules with

ontextual tags that are not related to the dependent. Otherwise, some possible dependenies will

be missed.

So onsidering the Uniqueness priniple and the ontextual tags, the user must take into

aount the following onstraint to build well-formed DepPattern grammars:

Constraint 2: No ontextual tag must be related to the dependent tag of a rule.

1.6 Environments without the Uniqueness Priniple

Constraints 1 and 2 stated above are diretly related to the Uniqueness Priniple of the Dependeny

Grammar. However, aording to some linguisti theories (e.g. Word Grammar), suh a priniple

seems to be too strong, sine it does not permit to deal with some spei� linguisti phenomena.

In order to properly analyse suh phenomena, it would be useful to write omplex rules without

taking into aount Uniqueness and then the two onstraints stated above. DepPattern allows two

speial environments within whih both onstraints are not applied: 'blos of rule' and operator

'NoUniq'

1.6.1 Bloks of rules

The �rst environment without Uniqueness Priniple is alled a �Blok of rules� (or �Blok�). De-

pendent nodes are only removed at the end of the Blok.

The syntax of a Blok is the following:

Rule-1

NEXT

Rule-2

NEXT

.

.

.

Rule-N

%

A Blok allows two di�erent tasks: on the one hand, it identi�es as many dependenies as rules

it ontains, and on the other, it removes the dependent tags only after having applied all rules

of the Blok. So, it identi�es the main head of the Blok, i.e., the only tag that does not play

the role of dependent in any rule. Let's see an example. Take the expression �movie that I see�,

transformed in the following string:

1.7. MORE OPTIONAL OPERATORS 13

movie_NOUN_<...> that_PRO_<...> I_PRO_<...> see_VERB_<...>

To analyze this expression, we propose the following Blok of 3 rules:

DObjetLeft : [NOUN℄ PRO<type:R> [PRO<type:P>℄ VERB

NEXT

SubjetLeft : [NOUN℄ [PRO<type:R>℄ PRO<type:P> VERB

NEXT

AdjuntRight : NOUN [PRO<type:R>℄ [PRO<type:P>℄ VERB

%

Eah rule identi�es a spei� dependeny. The �rst one identi�es the diret objet relation

between the relative pronoun �that� and the verb �see�. The seond rule identi�es the personal

pronoun �I� as being the subjet of the verb. And the third rule links the nominal anteedent

(�movie�) with the verb of the relative lause (�see�), whih is its right adjunt. As the noun is

the main head of the Blok, the other dependent onstituents are removed. The removal of all

dependents is only performed at the end of the Blo.

The rule where the main head of the Blok atually plays the role of head (so, it is not a

ontext tag) must be the last one of the blo. Otherwise, it would be di�ult to identify the main

head. In sum, when all the rules of a blok are applied, all tags that were not always ontextual

or that are not the head in the last rule of the blok are removed from the searh spae.

1.6.2 NoUniq environment

If the linguist wishes to de�ne a rule without removing the dependent node, he/she an use the

NoUniq operator. For instane:

DiretObjetR : VERB NOUN

NoUniq

%

This rule does not remove the NOUN tag from the searh spae.

It is also possible to de�ne a rule where both �head� and �dependent� are removed. For this

purpose, the �Remove� operator was de�ned:

DiretObjetR : VERB NOUN

Remove

%

This rule removes both the VERB and NOUN tags from the searh spae.

1.7 More optional operators

Rules an be enrihed with 4 additional operators: Reursivity, Agreement, Add, and Inherit.

1.7.1 Reursivity

In some ases, a rule or grammatial struture requires to be applied several times to deal with

with reursive expressions suh as, for instane, �nie red ar�. In this expressions the noun �ar� is

modi�ed by two adjetives in the same way. DepPattern an deal with this phenomenon in several

ways: using a blok of rules, applying twie the same rule, or using the operator �Reursivity�.

The 3 possible representations are the following:

Blok of rules:

14 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

AdjuntLeft : [ADJ℄ ADJ NOUN

NEXT

AdjuntLeft : ADJ [ADJ℄ NOUN

%

Repetition of the same rule:

AdjuntLeft : ADJ NOUN

%

AdjuntLeft : ADJ NOUN

%

Reursivity operator:

AdjuntLeft : ADJ NOUN

Reursivity: 1

%

�Reursivity� is spei�ed by numeri values: �1� means that the rule must be applied twie.

By default, the value is 0, that is a rule is applied only one. This operator permits to spei�y

the number of times a rule an be applied. It allows both a more ompat representation and an

easier ontrol of rule reursivity.

1.7.2 Agreement

In some ases, both the head and dependent require to share the same values for some of their

features. For instane, in Romane languages, the adjetive must agree with the noun in both

gender and number. One more, we an represent agreement in di�erent ways. To allow analysing

expressions suh as �ohe rojo� or �ohes rojos�, and not inorret ones like �*ohe roja� or

�*ohes rojo�, we an make use of a very enumbered representation with 4 rules:

AdjuntLeft : ADJ<number:S&gender:M> NOUN<number:S&gender:M>

%

AdjuntLeft : ADJ<number:S&gender:F> NOUN<number:S&gender:F>

%

AdjuntLeft : ADJ<number:P&gender:M> NOUN<number:P&gender:M>

%

AdjuntLeft : ADJ<number:P&gender:F> NOUN<number:P&gender:F>

%

However, DepGrammar also allows using the operator �Agreement� whih take as arguements

the features involved in the agreement operation:

AdjuntLeft : ADJ NOUN

Agreement: gender, number

%

1.7.3 Add

In some ases, it ould be useful to either add a new feature-value to the head or modify the value

of one of its features. These two operations an be performed by making use of operator �Add�.

For instane, the list of morpho-syntati features used by DepPattern does not ontain the verb

property �voie�. The operator allows to introdue a new feature speifying the voie of the head

verb (passive or ative) after having applied a grammatial rule. For instane, onsider a pattern

1.7. MORE OPTIONAL OPERATORS 15

identifying a semi-auxiliary verb (dependent) ourring to the left of a past partiple verb, its head

(as in the expression �was eaten�). Operator �Add� an be used to assign the passive voie to the

head verb:

Spei�erLeft: VERB<type:S> VERB<mode:P>

Add: voie:passive

%

This new morpho-syntati information, introdued by a grammatial rule, an be used as the

input in further rule appliations. Notie that Add an be very useful to orret systemati errors

made by the tagger, sine it also allows modifying values of existing features.

1.7.4 Inherit

The Inherit operator takes a list of features as input, identi�es the values of the dependent expres-

sion and assigns them to the orresponding features of the head. That means that this operation

allows the head to inherit the values of some features of the dependent. This operation an be

used to deal with verbal periphrases. It allows to transfert the morphologial properties of a light

verb to the ontent verb (only if the latter is onsidered the head). For instane, let's assume

that there is a rule analysing �had to work� as a dependeny between �have� (the dependent) and

�work� (the head), via preposition �to� (the relator):

PeriphrasisLeft: VERB<lemma:have> PRP<lemma:to> VERB

Inherit: mode, tense

%

The Inherit operetor transfers the past tense information from �had� to �work�, whih is the head

of the expression. Let's note that the fat of onsidering �work� as the head of the dependeny is

only one of the possible syntati representations.

1.7.5 Operators within bloks of rules

Reursivity annot be applied to the individual rules of a blok. Instead, it is applied on the whole

blok when the operator is plaed after the last rule.

Agreement an be applied on the individual rules of a blok. Conerning the use of this

operator, there are no di�erenes between rules within a blo and regular rules.

Add and Inherit only an be applied on the last rule of a blok. The reason is that these

operators are aimed to modify the features of a head and a blok only returns the main head.

1.7.6 Summary of operators

The list of operators DepPattern allows the linguist to use are the following:

NoUnique It does not remove the dependent tag. It has no arguments

Remove It removes both the head and the dependent. It has no arguments

Reursivity It applies a rule a number N of times before applying the following rule. It has one

argument: an integer.

Agreement It requires the dependent and the head to share the same values with regard to a

list of features. It has one argument: a list of features.

Add It adds a new feature-value to the head. If the feature already exists, it only modi�es the

value of the existing feature. It has one argument: a list of feature-value pairs.

16 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

Inherit It allows the head to inherit some values from the dependent. It has one argument: a

list of features (those from the the head inherit the values).

Corr It enables hanging PoS tags using a unary relation (type �Head�). It will desribed latter

in Setion 2.2.

1.8 Lexial Classes

DepPattern is also provided with a on�guration �le, alled �lexial_lasses.onf�, ontaining word

sets likely to be used in any rule. Let's see an example: instead of using diretly in a rule all those

possible lemmas onsidered as adverbial quanti�ers, it is more eonomial to delare a lexial lass,

alled for instane �$Quant�, instaniated by the orresponding lexial units:

$Quant = very quite more less

$Quant is a lexial variable likeky to be used in whatever rule. For instane, the rule

AdjuntLeft : ADV<lemma:$Quant> ADJ

%

states that there is an adjunt dependeny between an adverb belonging to the lexial lass $Quant

and any adjetive at its right.

Any set of words, even a huge list learnt automatially from a orpus, an beome a lexial

lass.

1.9 Begin and end of sentenes

To desribe patterns taking into aount the �rst tag of sentenes, it will be possible to use the

restrition <pos:0>. For instane:

SubjL : PRO<pos:0> VERB

%

This rule is applied when the subjet pronoun is the �rst element of the sentene (position =

0).

It is also possible to use symbol � � � to represent a head that has no dependent elements to

its left (apart from the dependents inserted in the pattern). For instane:

SubjL : � NOUN|PRO VERB

%

That means there is only a NOUN or a PRO linked to the verb as a left dependent. There are

not other omplements or modi�ers linked to the verb in the sentene appearing to the left of the

nominal subjet.

It is also possible to use the attribute �pos� to represent any position of a tag. For instane,

<pos:3> represents the forth position of a tag.

Finally, the end of a sentene an be represented by tag SENT. For instane:

SubjR : [PRO<lemma:how>℄ [ADJ<lemma:old>℄ VERB<lemma:be> NOUN|PRO

SENT<lemma:/?>

%

This rule represents the reverted subjet relation within a interrogative sentene suh as �how

old are you?�.

Chapter 2

Examples of Use

2.1 A sample grammar

To give an idea of how a DepPattern grammar an be built, let's propose the following set of rules:

AdjuntRight : VERB ADV

Reursivity: 1

%

AdjuntLeft : ADV VERB

Reursivity: 1

%

AdjuntLeft : ADJ NOUN

Reursivity: 1

Agreement: number, gender

%

AdjuntLeft : DT NOUN

Reursivity: 1

Agreement: number, gender

%

SubjLeft : NOUN|PRO VERB

Agreement: number, person

%

DObjRight : VERB NOUN|PRO

%

This small grammar is able to orretly analyse expressions suh as �fast ars�, whose output

analysis (with �ag -a) is the following:

SENT::<fast_ADJ_0_<number:0|funtion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ars_NOUN_1_<number:P|lemma:ar|gender:0|person:3|type:C|token:ars|> ._SENT>

(AdjnL;ar_NOUN_1;fast_ADJ_0)

Fim do parsing...

�a nie fast ar�:

SENT::<a_DT_0_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:a|>

nie_ADJ_1_<number:0|funtion:0|degree:0|lemma:nie|gender:0|type:0|token:nie|>

fast_ADJ_2_<number:0|funtion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ar_NOUN_3_<number:S|lemma:ar|gender:0|person:3|type:C|token:ar|> ._SENT>

17

18 CHAPTER 2. EXAMPLES OF USE

(SpeL;ar_NOUN_3;a_DT_0)

(AdjnL;ar_NOUN_3;nie_ADJ_1)

(AdjnL;ar_NOUN_3;fast_ADJ_2)

Fim do parsing...

�all the nie fast ars�:

SENT::<all_DT_0_<number:0|lemma:all|possessor:0|gender:0|person:0|type:0|token:all|>

the_DT_1_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>

nie_ADJ_2_<number:0|funtion:0|degree:0|lemma:nie|gender:0|type:0|token:nie|>

fast_ADJ_3_<number:0|funtion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ars_NOUN_4_<number:P|lemma:ar|gender:0|person:3|type:C|token:ars|> ._SENT>

(SpeL;ar_NOUN_4;all_DT_0)

(SpeL;ar_NOUN_4;the_DT_1)

(AdjnL;ar_NOUN_4;nie_ADJ_2)

(AdjnL;ar_NOUN_4;fast_ADJ_3)

Fim do parsing...

�all the fast ars run fast�:

SENT::<all_DT_0_<number:0|lemma:all|possessor:0|gender:0|person:0|type:0|token:all|>

the_DT_1_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>

nie_ADJ_2_<number:0|funtion:0|degree:0|lemma:nie|gender:0|type:0|token:nie|>

fast_ADJ_3_<number:0|funtion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ars_NOUN_4_<number:P|lemma:ar|gender:0|person:3|type:C|token:ars|>

run_VERB_5_<number:0|mode:0|lemma:run|gender:0|tense:0|person:0|type:0|token:run|>

fast_ADV_6_<degree:0|lemma:fast|token:fast|> ._SENT>

(SpeL;ar_NOUN_4;all_DT_0)

(SpeL;ar_NOUN_4;the_DT_1)

(AdjnL;ar_NOUN_4;nie_ADJ_2)

(AdjnL;ar_NOUN_4;fast_ADJ_3)

(SubjL;run_VERB_5;ar_NOUN_4)

(AdjnR;run_VERB_5;fast_ADV_6)

Fim do parsing...

�Bill bought a fast ar�:

SENT::<Bill_NOUN_0_<number:S|person:3|type:C|lemma:bill|token:Bill|gender:0|>

bought_VERB_1_<number:0|mode:0|lemma:buy|gender:0|tense:S|person:0|type:0|token:bought|>

a_DT_2_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:a|>

fast_ADJ_3_<number:0|funtion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ar_NOUN_4_<number:S|lemma:ar|gender:0|person:3|type:C|token:ar|> ._SENT>

(SubjL;buy_VERB_1;bill_NOUN_0)

(SpeL;ar_NOUN_4;a_DT_2)

(AdjnL;ar_NOUN_4;fast_ADJ_3)

(DobjR;buy_VERB_1;ar_NOUN_4)

Fim do parsing...

2.2. USING DEPPATTERN TO CORRECT THE POS TAGGED INPUT TEXT 19

�the rih man bought yesterday a nie fast ar�:

SENT::<the_DT_0_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>

rih_ADJ_1_<number:0|funtion:0|degree:0|lemma:rih|gender:0|type:0|token:rih|>

man_NOUN_2_<number:S|lemma:man|gender:0|person:3|type:C|token:man|>

bought_VERB_3_<number:0|mode:0|lemma:buy|gender:0|tense:S|person:0|type:0|token:bought|>

yesterday_ADV_4_<degree:0|lemma:yesterday|token:yesterday|>

a_DT_5_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:a|>

nie_ADJ_6_<number:0|funtion:0|degree:0|lemma:nie|gender:0|type:0|token:nie|>

fast_ADJ_7_<number:0|funtion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ar_NOUN_8_<number:S|lemma:ar|gender:0|person:3|type:C|token:ar|> ._SENT>

(SpeL;man_NOUN_2;the_DT_0)

(AdjnL;man_NOUN_2;rih_ADJ_1)

(SubjL;buy_VERB_3;man_NOUN_2)

(AdjnR;buy_VERB_3;yesterday_ADV_4)

(SpeL;ar_NOUN_8;a_DT_5)

(AdjnL;ar_NOUN_8;nie_ADJ_6)

(AdjnL;ar_NOUN_8;fast_ADJ_7)

(DobjR;buy_VERB_3;ar_NOUN_8)

Fim do parsing...

�he really wants another ar�.

SENT::<he_PRO_0_<number:0|lemma:he|possessor:0|ase:0|gender:0|person:0|politeness:0

|type:P|token:he|>

really_ADV_1_<degree:0|lemma:really|token:really|>

wants_VERB_2_<number:0|mode:0|lemma:want|gender:0|tense:P|person:3|type:0|token:wants|>

another_DT_3_<number:0|lemma:another|possessor:0|gender:0|person:0|type:0|token:another|>

ar_NOUN_4_<number:S|lemma:ar|gender:0|person:3|type:C|token:ar|> ._SENT>

(SubjL;want_VERB_2;he_PRO_0)

(AdjnL;want_VERB_2;really_ADV_1)

(SpeL;ar_NOUN_4;another_DT_3)

(DobjR;want_VERB_2;ar_NOUN_4)

Fim do parsing...

Rules an be ordered in di�erent ways, sine they �ll the basi onstraints stated berore in

this tutorial. However, to be e�ient, a DepPattern grammar should be written by asades

of rules representing linguisti layers or modules. An optimal grammar should ontain �rst rules

onerning adverb phrases, then adjetive phrases, then nominal phrases, and �nally verb phrases.

2.2 Using DepPattern to Corret the PoS Tagged Input Text

DepPattern is provided with tools suited to orret errors of the input PoS tagged text. DepPattern

allows a linguist to elabore syntati rules in order to orret systemati mistakes made by the

PoS tagger. For this purpose, we are provided with 3 new elements:

• A new type of dependeny, �Head�, whih represents a unary relation (arity 1). In the default

on�guration �le, dependenies.onf, we delared one type unary relation, alled �Single�.

• A new operation, �Corr�, whose aim is to orret all information assoiated to a lexial unit:

type of PoS tag and morpho-syntati features. It is similar to the operation �Add�. The

main di�erene is that �Corr� allows to hange the PoS tag itself.

20 CHAPTER 2. EXAMPLES OF USE

• A new output format obtained using �ag -. Instead of generating as output the dependeny

triplets identi�ed by the grammar (�ag -a), we an use �ag - to rewrite the same input, but

ontaining all orretions made by operations suh as �Corr�, or �Inherit�, or �Add�.

Let's see an example. Suppose that the PoS tagger systematially tag as a subordinate on-

juntion the word that following a noun, even if in this ontext that is, in general, a relative

pronoun. To solve the problem, we an write a rule as follows:

Single : [NOUN℄ CONJ<lemma:that&type:S>

Corr: tag:PRO, type:R

%

This way, the information introdued by the operator �Corr� is used to hange the head ex-

pression of the unary relation �Single�. It substitutes tag PRO and type R for the information

ontained in the head (tag CONJ and type S). More preisely, this rule identi�es as head a subor-

dinate onjuntion with lemma that following a noun (its ontext), and transform this head entry

into a relative pronoun. Notie that there there is no dependent expression involved in the rule,

sine the relation type of �Single� is Head.

�Corr� also allows orreting attibutes by using the values of other attributes:

Corr: lemma:=token

It means that the value of the lemma is the value of the token. In other words, the lemma

attribute inherits the value of the token attribute.

2.3 Funtion Uniity

The type of dependeny �Head� an also be used to take into aount the priniple of funtion

uniity. This priniple states that a verb only ontains one main funtion: one Subjet, one Diret

Objet, and one Indiret Objet. So, the grammar should prevent of applying the orresponding

rules more than one. To do it, we propose the following strategy. First, we de�ne the following

rule:

Single : VERB

Add: subj:0, dobj:0, iobj:0

%

This means that every verb is provided with 3 new attribute-value pairs (subj:0, dobj:0, and

iobj:0), whih represent the fat that a verb these 3 funtions have not been found yet. Then, all

de�nitions of rules used to identify these funtions should ontain the following information:

SubjL : NOUN VERB<subj:0>

Add: subj:1

%

This rule is applied only if the verb has not another subjet. Then, the attribute 'subj' is

assigned value 1. Then, this rule annot be applied again.

2.4 DepPattern and Pattern Grammar

DepPattern is a formalism ombining notions of both Dependeny Grammar and Pattern Gram-

mar.

The main aim of Pattern Grammar is to identify meaningful patterns assoiated to words. The

meaningful patterns of a word an be de�ned as all the words and strutures whih are regularly

assoiated with the word and whih ontribute to its meaning. A meaninful pattern is identi�ed if

2.4. DEPPATTERN AND PATTERN GRAMMAR 21

a ombination of words ours relatively frequently, if it is dependent on a partiular word hoie,

and if there is a lear meaning assoiated with it. One of the most relevant assumpations of Pattern

Grammar is that there is no a lear boderline between both syntati and lexial strutures.

A very simple formalism is used to represent meaningful patterns of words in Pattern Grammar.

For instane, the meaningful patterns of the verb �explain� would be represented as follows:

V n (explain all the di�erent types)

V wh (explained how it worked)

V about n (explain about the barman)

V n to n (she explained it to you)

V that (she explained that she never paid)

V to n (Alex explained to me)

V to n that (have to explain to their patients that they...)

Where V stands for the lexial item to be represented (in this ase �explain�), symbols 'n',

'wh', 'that' stands for 'noun group', 'lause introdued by a wh-word', and 'lause introdued by

that ', respetively. Finally, to and about are other lexial items being part of a pattern.

DepPattern is provided with the approppriate tools to represent and identify meaningful pat-

terns of lexial words. In order to identify suh meaningful patterns in DepPattern, we need to

introdue dependeny relationships between words instead of phrasal groups. The spei� Dep-

Pattern rules written to identify the meaningful patterns of �explain� ould be the following:

V n DobjR: VERB<lemma:explain> NOUN

V wh ObjL: [VERB<lemma:explain>℄ PRO<type:W> [X℄* VERB

NEXT

DObjR: VERB<lemma:explain> [PRO<type:W>℄ [X℄* VERB

V about n PrepCompR: VERB<lemma:explain> PRP<lemma:about> NOUN

V n to n DobjR: VERB<lemma:explain> NOUN [PRP<lemma:to>℄ [NOUN℄

NEXT

PrepCompR VERB<lemma:explain> [NOUN℄ PRP<lemma:to> NOUN

V that SpeL: [VERB<lemma:explain>℄ CONJ<lemma:that> [X℄* VERB

NEXT

DObjR VERB<lemma:explain> [CONJ<lemma:that>℄ [X℄* VERB

V to n PrepCompR: VERB<lemma:explain> PRP<lemma:about> NOUN

V to n that SpeL: [VERB<lemma:explain>℄ [PRP<lemma:to>℄ [NOUN℄

CONJ<lemma:that> [X℄* VERB

NEXT

PrepCompR: VERB<lemma:explain> PRP<lemma:to> NOUN

[CONJ<lemma:that>℄ [X℄* [VERB℄

NEXT

DobjR: VERB<lemma:explain> [PRP<lemma:to>℄ [NOUN℄

[CONJ<lemma:that>℄ [X℄* VERB

These rules should be loated at the begining of the verbal phrase layer, and following adverb,

adjetive, and nominal rules.

22 CHAPTER 2. EXAMPLES OF USE

Chapter 3

Further Information

3.1 Contributions

Pablo Gamallo Otero and Isaa González

Grupo Proessamento da L�ngua NaTural (ProLNaT)

University of Santiago de Compostela

Galiza, Spain

pablo.gamallo�us.es

23

	DepPattern: Description of the Formalism
	Basic description
	Types of dependencies
	List of PoS tags and list of morpho-syntactic features
	Description of Patterns
	How rules are applied
	Environments without the Uniqueness Principle
	More optional operators
	Lexical Classes
	Begin and end of sentences

	Examples of Use
	A sample grammar
	Using DepPattern to Correct the PoS Tagged Input Text
	Function Unicity
	DepPattern and Pattern Grammar

	Further Information
	Contributions

