
Tutorial of DepPattern

How to write a grammar with DepPattern

January 2009

Contents

1 DepPattern: Des
ription of the Formalism 1

1.1 Basi
 des
ription . 1

1.2 Types of dependen
ies . 1

1.3 List of PoS tags and list of morpho-synta
ti
 features 4

1.4 Des
ription of Patterns . 5

1.5 How rules are applied . 11

1.6 Environments without the Uniqueness Prin
iple . 12

1.7 More optional operators . 13

1.8 Lexi
al Classes . 16

1.9 Begin and end of senten
es . 16

2 Examples of Use 17

2.1 A sample grammar . 17

2.2 Using DepPattern to Corre
t the PoS Tagged Input Text 19

2.3 Fun
tion Uni
ity . 20

2.4 DepPattern and Pattern Grammar . 20

3 Further Information 23

3.1 Contributions . 23

i

Chapter 1

DepPattern: Des
ription of the

Formalism

1.1 Basi
 des
ription

DepPattern is a formalism to write dependen
y grammars. The DepPattern
ompiler,
alled

Compi, generates robust parsers from DepPattern grammars. The use of the DepPattern
ompiler

is des
ribed in the user guide. It has been brought under the GNU General Publi
 Li
ense.

A spe
i�
 DepPattern grammar is
onstituted by a set of
ontext dependent rules. Every rule

is aimed to identify a spe
i�
 dependent-head relation by means of a pattern of Parts-of-Spee
h

tags. A rule is
onstituted by two elements:

• a pattern of PoS tags

• the name of a head-dependent relation found within the pattern

Let's see an example:

Adjun
t : ADJ NOUN

%

The �rst element is "Adjun
t", whi
h stands for the name of a dependen
y relation. Any

name
an be used for any dependen
y, only if it was previously de
lared in the
orresponding

on�guration �le (see Se
tion 1.2). The se
ond element is a sequen
e of PoS tags, whi
h we
all

"pattern". A pattern must
onsist of, at least, two tags: the one representing the dependent

expression and the other representing the head. Names for tags are de
lared in the
orresponding

on�guration �le (see Se
tion 1.3).

Both, the dependen
y name and the pattern are separated by two dots (:). Symbol % represents

the end of the rule. It is always possible to make use of regular expression operators to tune any

hara
ter or string : ?,[℄*, [� ℄, et
.

1.2 Types of dependen
ies

1.2.1 Main Types

DeptPattern allows a linguist to de�ne the number of dependen
ies he/she
onsiders they are ne
-

essary to build the grammar. If a new dependen
y is required, he/she must open the
on�guration

�le and write a new line with the name of the dependen
y and its type. DepPattern de�nes 2

basi
 types of dependen
ies:

1

http://gramatica.usc.es/pln/tools/user_guide.pdf

2 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

• A synta
ti
 dependen
y between two words (a head and a dependent), for instan
e, the

adjun
t relation between a noun and an adje
tive. We
all it open-
hoi
e dependen
y.

• A lexi
on-synta
ti
 relationship between two words, for instan
e, the relation between the

english verb "swit
h" and the parti
le "o�", whi
h is a synta
ti
 relation giving rise to a

new lexi
al entry, namely the verb "swit
h o�". This type of dependen
y is
alled idiom

dependen
y of lexi
al dependen
y. They also produ
e synta
ti
 relations between lexi
al

units, but, in addition, a new lexi
al unit is generated by modifying the lemma of the head.

Ea
h basi
 dependen
y type has two subtypes a

ording to the relative position of the head

and the dependent: the dependent
an be either to the left (dependent-head) or to the right of the

head (head-dependent). An unlimited number of words
an be inserted between both the head

and the dependent. So,
onsidering information on word order, the grammar
ontains 4 di�erent

types of dependen
ies:

DepHead An open-
hoi
e dependen
y where the dependent is to the left of the head. For instan
e

"big monster". The adje
tive is a left adjun
t of the noun.

HeadDep An open-
hoi
e dependen
y where the dependent is to the right of the head. For

instan
e "eat (red) meat". The noun is the dire
t obje
t appearing to the right of the verb.

In this example, there is an inserted adje
tive between the verb and the noun.

DepHead_lex A lexi
al dependen
y where the dependent (or parti
le) is to the left of the head

(or main word). For instan
e "se arrodilla". The parti
le "se" is to the left of the re�exive

verb.

HeadDep_lex A lexi
al dependen
y where the dependent (or parti
le) is to the right of the head

(or main word). For instan
e "swit
h (the light) o�". The parti
le "o�" is to the right of

the verb.

1.2.2 Further types

Dependen
ies
ontaining a lexi
al relation

To symplify some linguisti
 analyses, DepPattern also allows to de�ne dependen
ies between two

words (a head and a dependent) where the synta
ti
 relation between them is lexi
alized. In this

ases, there is a third gramati
al word used as dependen
y relator. For instan
e, we
an
onsider

that the expression "man with glasses"
ontains a open-
hoi
e dependen
y between "man" and

"glasses" marked by prepostion "with", whi
h is here a kind of binary relator. Obviously, su
h an

expression
an also be represented in a more standard way, by means of two basi
 dependen
ies

(�with� and �glasses�, �man� and �with�). Likewise, the expression �if it rains, I go�
an
ontain an

open-
hoi
e dependen
y between �rains� and �go�, linked by the
onjun
tion �if�. These are
alled

omplex open-
hoi
e dependen
ies.

It would be possible to also �nd examples of
omplex lexi
al dependen
ies. For instan
e, �have

to eat�
ould be analysed as an idiomati
 dependen
y between �have� and �eat�, related by means

of parti
le �to�. However, these dependen
y types are not implemented in the
urrent version of

the DepPattern
ompiler.

The types implemented are the following
omplex open-
hoi
e dependen
ies:

• DepRelHead

• HeadRelDep

• DepHeadRel

• HeadDepRel

• RelDepHead

1.2. TYPES OF DEPENDENCIES 3

• RelHeadDep

Complex dependen
ies are, in fa
t,
onstituted by single binary dependen
ies. They
an be

used as synta
ti
-semanti
 short-
uts in order to simplify the analysis.

Unary relationship

The types of dependen
ies des
ribed above are used to identify word dependen
ies. However,

DepPattern also permits to identify a PoS tagg in
ontext to make di�erent operations on it:

morpho-synta
ti

orre
tions, addition of semanti
 or pragmati
 information, modi�
ation of some

features, et
. For this purpose, we de�ned a unary relation type: 'Head'. In Se
tion 2.2 of this

tutorial, we show an example of how this type of relation is used to solve systemati
 PoS tagging

errors. In addition, in Se
tion 2.3, it is used to set fun
tion uni
ity.

Summary

So, in sum, DepPattern
ontains 11 types: 2 simple open-
hoi
e binary dependen
ies, 2 simple

lexi
al binary dependen
ies, 4
omplex open-
hoi
e binary dependen
ies, and 1 unary relationship.

In further versions, we'll implement the 6
omplex lexi
al dependen
ies left.

1.2.3 The
on�guration �le: 'dependen
ies.
onf'

Dependen
y names and their types are de
lared in the
on�guration �le "dependen
ies.
onf". The

number of spe
i�
 dependen
ies is open, that is, the user is free to de
lare the number of depen-

den
ies he/she
onsider being appropriate to de�ne the grammar. Every dependen
y must belong

to one of the 10 types de�ned above. Ea
h line of the
on�guration �le
onsists of two
olumns:

the �rst
olumn
ontains the name of a dependen
y, whereas the se
ond
olumn
ontains its type.

Let's see an example:

Adjun
tLeft DepHead

Adjun
tRight HeadDep

Spe
i�erLeft DepHead

Spe
i�erRight HeadLeft

Subje
tLeft DepHead

Subje
tRight HeadDep

DObje
tLeft DepHead

DObje
tRight HeadDep

PrepComplLeft DepRelHead

PrepComplRight HeadRelDep

As word order is involved in the de�ntion of dependen
y types, we need to take into a

ount

the relative position of the two words (dependent and head) when we asso
iate a name to a spe-

i�
 dependen
y. In the example above, we do not use simple names su
h as Adjun
ts, Spe
i�ers,

Subje
ts, et
. Ea
h dependen
y is assigned two
omplementary names. On the one hand, Ad-

jun
tLeft, Spe
i�erLeft, Subje
tleft,. . . stand for dependen
ies in whi
h the dependent word o

urs

at the left position with regard to the head. On the other hand, Adjun
tRight, Spe
i�erRight,

Subje
tRight,. . . represent dependen
ies where the dependent is at the right. However the user is

free to
hoose whatever name for his/her dependen
ies. The example above is just a proposal.

The only requirement the user must �ll is to assign only one parti
ular type to ea
h dependen
y

name.

4 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

1.3 List of PoS tags and list of morpho-synta
ti
 features

1.3.1 Tagset

The tagset depends on the system used to tag the input text. For instan
e, the tagset of the

English Tree-Tagger is di�erent from that of the Spanish Tree-Tagger, whi
h is di�erent from that

of the Spanish Freeling, et
. However, the parser uses as input the output of a tool whose aim is

to
onvert the main PoS tags of all those taggers into a shared list of tags. The shared list is the

following: ADJ (adje
tive), ADV (adverb), NOUN (noun), PRP (preposition), CARD (
ardinal

number), CONJ (
onjun
tion), DT (determiner), PRO (pronoun), VERB (verb), I (interje
tion),

and 25 more tags for pun
tuation marks. In addition, there are still some PoS tags belonging to

only one tagger. For instan
e, the English tree-tagger also
ontains spe
i�
 tags su
h as: PoS ('s),

PCLE (parti
le), EX (existential 'there'), et
.

The
on�guration �le where the names of tags are de
lared is
alled tagset.
onf. Ea
h line
on-

tains two
olumns. The se
ond
olumn
ontains the names of tags a
tually used by the system.

These names
orrespond to both the list of PoS tags shared by all PoS taggers, and those PoS

tags whi
h are spe
i�
 to ea
h PoS tagger. The �rst
olumn shows the names
hosen by the user

to build the grammar. The user is free to use whatever name. All regular PoS tags are written

with upper-
ase letters. Let's see an example:

ADJECTIVE ADJ

ADVERB ADV

PREP PRP

C CONJ

NUMBER CARD

DET DT

NOUN NOUN

PRON PRO

V VERB

INT I

POS POS

PCLE PCLE

It is also possible to
reate short-
uts using regular expressions, su
h as:

X [A-Z℄+

NOTVERB [�V℄[�E℄+

PUNCT F[a-z℄+

Variable X stands for whi
hever tag name, NOTVERB for whatever tag ex
ept those
ontain-

ing the string VE (like VERB), and PUNCT all tags
ontaining the string F followed by some

lower-
ase letters (i.e., pun
tuation marks). To de�ne more spe
i�
 shor
uts, we
an also use the

dysjun
tion operation �|�:

NOMINAL PRON|NOUN

Tags of pun
tuation marks

Finally, the spe
ial tags representing pun
tuation marks are in Table 1.1.

Tag SENT is used to represent the end of a senten
e. Three symbols are asigned the tag

SENT: �

'', �?� and �!�. A senten
e is a string between two SENT tags. Patterns are de�ned

within senten
es. Up to know, DepPattern does not allow to de�ne rules involved more than one

senten
e.

1.4. DESCRIPTION OF PATTERNS 5

. SENT

? SENT

! SENT

½ Faa

, F

[F
a

] F
t

: Fd

" Fe

- Fg

/ Fh

¾ Fia

{ Fla

} Flt

(Fpa

) Fpt

� Fra

� Frt

. . . Fs

% Ft

; Fx

+ Fz

− Fz

= Fz

Table 1.1: List of tags representing pun
tuation marks.

1.3.2 List of morpho-synta
ti
 features

PoS tags are enri
hed by means of a
losed set of morpho-synta
ti
 features. All PoS tags have,

at least, three features: �token�, �lemma�, and �pos� (position). The values of these two features

are provided by the PoS tagger given a parti
ular word. For instan
e, if the word �eggs� was

tagged as NOUN in the third position of the senten
e, the features �token�, �lemma�, and �pos�

will be assigned the values �eggs�, �egg�, and �2�, respe
tively (note that the �rst position is �0�).

In addition, ea
h PoS tag has its own set of features. Tables 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

1.10, and 1.11, show the spe
i�
 features (�rst
olumn) for ea
h tag, in
luding the possible values

for ea
h feature (se
ond
olumn). The meaning of ea
h value is des
ribed in the third
olumn. To

symplify the des
ription, the tables below do not show the null value or �0�, whi
h is automati
ally

assigned to a feature when the
urrent PoS tagger does not provide su
h a spe
i�
 information.

Unfortunately, many PoS taggers used by the parser provide non-zero values for many fea-

tures. The ex
eption is Freeling for Spanish, Gali
ian, and Portuguese, whi
h
ontains all morpho-

synta
ti
 information required by the parser.

1.4 Des
ription of Patterns

1.4.1 Basi
 Patterns

Given a rule, a pattern of PoS tags is a sequen
e of tags used to identify a spe
i�
 dependen
y. A

Pattern must �ll the following requirements:

• It must
ontain, at least, those tags that are involved in the dependen
y: both the head and

the dependent. Complex dependen
ies (HeadRelDep, DepRelHead, et
.) also need a third

element: the relator.

6 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

features values des
ription

type Q qualifying

O ordinal

degree A Aumentative

S Superlative

gender M mas
uline

F feminine

number S singular

P plural

fun
tion P parti
iple

Table 1.2: List of features and values for tag ADJ (adje
tives).

features values des
ription

type G general

N negative

Table 1.3: List of features and values for tag ADV (adverbs).

features values des
ription

type D demonstrative

P possessive

T interrogative

E ex
lamative

I inde�nite

A arti
le

person 1 �rst

2 se
ond

3 third

gender M mas
uline

F feminine

N neutral

number S singular

P plural

N invariable

possessor S singular

P plural

Table 1.4: List of features and values for tag DT (determinants).

1.4. DESCRIPTION OF PATTERNS 7

features values des
ription

type C
ommon

P proper name

gender M mas
uline

F feminine

number S singular

P plural

person 1 �rst

2 se
ond

3 third

Table 1.5: List of features and values for tag NOUN (nouns).

features values des
ription

type M main

A auxiliary

S semiauxiliary

mode I indi
ative

S subjun
tive

M imperative

N in�nitive

G gerund

P parti
iple

tense P present

I imperfe
t

F future

S past

C
onditional

person 1 �rst

2 se
ond

3 third

number S singular

P plural

N invariable

gender M mas
uline

F feminine

Table 1.6: List of features and values for tag VERB (verbs).

8 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

features values des
ription

type D demonstrative

P personal

T interrogative

E ex
lamative

I inde�nite

X possessive

R relative

W wh-word

person 1 �rst

2 se
ond

3 third

gender M mas
uline

F feminine

N neutral

number S singular

P plural

N invariable

possessor S singular

P plural

ase N nominative

A a

usative

D dative

O oblique

politeness P polite

Table 1.7: List of features and values for tag PRO (pronouns).

features values des
ription

type C
oordinating

S subordinating

Table 1.8: List of features and values for tag CONJ (
onjun
tions).

features values des
ription

(no features) (no values)

Table 1.9: List of features and values for tag I (interje
tions).

features values des
ription

type P preposition

Table 1.10: List of features and values for tag PRP (prepositions).

1.4. DESCRIPTION OF PATTERNS 9

features values des
ription

gender M mas
uline

F feminine

number S singular

P plural

person 1 �rst

2 se
ond

3 third

Table 1.11: List of features and values for tag CARD (
ardinals).

• It may
ontain
ontextual tags, whi
h will be en
losed in square bra
kets: [℄.

• Any
ontextual tag
an be tunned with standard wild
ards representing optionality, iteration,

et
., that is, well known operators used by languages based on regular expressions.

The following examples are Patterns that �ll the requirements of DepPattern:

ADJ NOUN

[DT℄ ADJ NOUN

DT [X℄* NOUN

VERB [ADV℄* [DT℄* [ADJ℄* NOUN

VERB [DT℄+ NOUN

VERB [DT℄? NOUN

NOUN PRP [DT℄* [ADJ℄* NOUN

- -[DT℄ ADV VERB

VERB NOUN -[PRP℄

The �rst pattern des
ribes an adje
tive immediately followed by a noun. Both tags are involved

in a simple dependen
y. The se
ond pattern represents the same situation, but in this
ase there

is a
ontextual determiner whi
h is not involved in the dependen
y. The third pattern stands

for a simple dependen
y
onstituted by a determiner followed by a noun and, optionally, by an

unlimited number of di�erent tags between them. The inserted tags are not involved in the

dependen
y: they build the
ontext. Tag X is a short
ut de�ned in the
on�guration �le (see

Se
tion 1.3). The fourth pattern represents a simple dependen
y between a verb and a noun with

three optional tags beween them building the
ontext. The
ontext is
onstituted by 0 or more

adverbs, derterminers and adje
tives. The �fth pattern represents the same simple dependen
y

but, in this
ase, the
ontext is not optional: there must be one or more determiners between

the verb and the noun. The sixth pattern is similar to the previous one. The di�eren
e is that

the
ontextual determiner is optional: there must be 0 or 1 determiner. The seventh pattern

represents a
omplex synta
ti
 dependen
y between three elements: a noun, a preposition and

another noun. There are two optional
ontextual tags between the preposition and the se
ond

noun: 0 or more determiners and 0 or more adje
tives. So, wild
ards su
h as *, +, or ? have their

standard meaning in regular expressions. The two last patterns
ontain negative
ontexts. The

8th pattern introdu
es a negative
ontext at the left side of the rule. It mat
hes any ADV VERB

ombination if only if there is no DT to the left. The last one introdu
es a negative
ontext at

the right side. It mat
hes any VERB NOUN
ombinaion followed of a tag di�erent from PRP.

1.4.2 Patterns with features

Ea
h PoS tag in a pattern may
ontain morpho-synta
ti
 and/or lexi
al information. This in-

formation is represented by a feature-value stru
ture, noted as a pair <feature:value>. Let's see

some examples:

10 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

ADV<lemma:very> ADV

PRO<type:R> VERB

The �rst pattern represents a dependen
y between two adverbs, one of them is asso
iated to the

lemma �very�. This is a lexi
al restri
tion. The se
ond pattern represents a dependen
y between

a pronoun and a verb. The pronoun is
hara
terized by means of the type �R(elative)�. This is

a morpho-synta
ti
 restri
tion. Both lexi
al and morpho-synta
ti
 restri
tions are represented by

means of feature-value stru
tures. In the example above, �lemma� and �type� are features, while

�very� and �R� are their spe
i�
 values.

One of the main advantages of DepPattern is that features are only used when they are ne
es-

sary. Given a PoS tag, all those features that are not spe
i�ed in a pattern are
onsidered to have

value 0.

1.4.3 Patterns with boolean operators

It is possible to de�ne more
omplex patterns using boolean operators: |means disjun
tion (OR),

and & means
onjun
tion (AND). Operator |
an be used for tags, for features, and for values of

features. However, for pra
ti
al reasons, operator & is only used for features. It
annot be used

for feature values be
ause, by de�nition, two di�erent values of a feature are mutually ex
lusive.

In addition, patterns are not required to use it sin
e they alredy presuppose the meaning of tag

onjun
tion. Let's see some examples:

ADV<lemma:very|quite|rather> ADV|ADJ

PRO<lemma:that&type:Q> VERB

VERB<(mode:S)|(tense:P)> NOUN

The �rst pattern introdu
es two �|� operators. The �rst one represents a disjun
tion among

three possible values (�very�, �quite�, and �more�) of the feature �lemma�. The se
ond one is

an operator on tags: it allows to
hoose between either an adverb or an adje
tive. The se
ond

pattern introdu
es the �&� operator between two features that must be �lled simultaneously: to be

a relative pronoun (R), and to be lexi
alized by means of �that�. Finally, in the third pattern, there

is a disjun
tion between two di�erent verbal features. Let's note that disjun
tions on features by

means of the operator | requires the use of bra
kets: �(feature1:value1)|(feature2:value2)�.

The number of arguments of both | and & is unlimited. When
ombining the two operators

(only with features), & must be always within the s
ope of |. Below, we show some well formed

expressions in DepPattern:

Tag1<(feature1:value1)|(feature2:value2&feature3:value3)>

Tag1<(feature1:value1&feature2:value2)|(feature3:value3)>

Let a, b, and c be 3 features. All possible
ombination of these 3 features with the 2 boolean

operators are represented as follows:

DepPattern representation Standard bra
keted representation

(a)|(b&c) (a|(b&c))
(a&b)|(c) ((a&b)|c)
(a&c)|(b&c) ((a|b)&c)
(a&b)|(a&c) (a&(b|c))

The �rst
olumn shows well-formed DepGrammar expressions while the se
ond one depi
ts the

orresponding expressions using a more
ompa
t representation. In the standard representation,

bra
kets are used to delimit the s
ope of the operator. DepPattern representation is not so
ompa
t

but is easy to read.

1.5. HOW RULES ARE APPLIED 11

1.5 How rules are applied

As we have said before, a rule must
ontain, at least, the following elements:

dependen
y_name : PATTERN

%

A grammar is a list of rules. A rule is applied on a tagged expression (input) if the PATTERN

provided by the rule mat
hes a sequen
e of tags within the expression. The appli
ation of a

rule
onsistis in identifying a spe
i�
 synta
ti
 dependen
y between two tags (boht the head and

dependent) belonging to the pattern.

Rules are applied sequen
ially in an iterative pro
ess. Most rules
hange the input of the next

rules to be applied (this will be des
ribed in the following subse
tions). The pro
ess stops when no

rule
an be applied. However, the linguist
an
hoose an algorithm where iteration is pre
luded.

The parsing algorithm without iteration
onsists in applying rules sequen
ially; the pro
ess stops

when the parser a
hieves the last rule to be applied. In order to set up the restri
tive algorithm

without iteration, see the user guide (Se
tion 'Extensions', Subse
tion 'Pre
luding Iteration').

1.5.1 Uniqueness Prin
iple

A rule not only identi�es a dependen
y between two words, it also removes the dependent

word from the
urrent expression that is being analysed. The modi�ed expression will be

the input of the following rule. So, rules are applied sequen
ially and modify the input of the next

rule to be applied. Su
h a modi�
ation is justi�ed by the Uniqueness prin
iple of Dependen
y

Grammar.

Let's suppose that we build a simple grammar with the following two rules:

Adjun
tLeft : ADJ NOUN

%

Spe
Left : DT NOUN

%

Let's analyse the expression �a beautiful mountain�. The input string of the parser would be

like this:

a_DT_<...> beautiful_ADJ_<...> mountain_NOUN_<...>

The �rst rule is applied on this string and �nds the �ADJ NOUN� pattern. This �nding allows

the rule to identify the adjun
t dependen
y between �beautiful� and �mountain�. But the rule also

removes the adje
tive (whi
h is the dependent expression) from the string that will be the input

the following rule. So, the se
ond rule will be applied on this new input:

a_DT_<...> mountain_NOUN_<...>

It �nds the �DT NOUN� pattern and then the dependen
y between �a� and �mountain�. In

addition, it removes the determiner from the input string. The head �mountain� is the only

expression to be analysed in further appli
ations of rules.

A

ording to the �Uniqueness prin
iple�, a dependent word only has one head. So, if we identify

a dependen
y relation
ontaining a dependent word whi
h is no more the head of any word, then it

means that we have alredy found all dependen
ies asso
iated to that word and it
an be removed

from the sear
h spa
e. The fa
t of removing one by one the dependents from the input string

allows us to redu
e in a systemati
 way the sear
h spa
e, whi
h
onsists of a huge variety of

possible patterns of tags.

Considering Uniqueness, the following
onstraint is required to write well-formed DepPattern

grammars:

Constraint 1: The dependent tag of a rule musn't be involved in further rules. In other words,

before writing a rule, we must write before all those rules
ontaining heads instan
iated by

the dependent tag of the
urrent rule.

http://gramatica.usc.es/pln/tools/user_guide.pdf

12 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

1.5.2 Uniqueness Prin
iple and
ontextual tags

When
ontextual PoS tags are used to de�ne a pattern, it is ne
essary to take into a

ount

whether the
ontextual tags are or not synta
ti
ally related to the dependent tag of the pattern.

For instan
e, take this rule:

Adjun
tLeft : [DT℄? [ADV℄? ADJ NOUN

%

The
ontextual tags, [ADV℄ and [DT℄, have signi�
ant di�eren
es. While [ADV℄ is synta
ti
ally

related to the adje
tive, whi
h is the dependent, [DET℄ is linked to the noun, the head of the

dependen
y. So, if this rule is applied, it will not be possible to identify later the dependen
y

between the adverb and the adje
tive, given that the adje
tive has already been removed from the

input string. However, as [DT℄ is related to the head, the dependen
y between DT and NOUN

an be ident�ed later by using the
orresponding rule.

In order to identify as many dependen
ies as possible, the grammar should
ontain rules with

ontextual tags that are not related to the dependent. Otherwise, some possible dependen
ies will

be missed.

So
onsidering the Uniqueness prin
iple and the
ontextual tags, the user must take into

a

ount the following
onstraint to build well-formed DepPattern grammars:

Constraint 2: No
ontextual tag must be related to the dependent tag of a rule.

1.6 Environments without the Uniqueness Prin
iple

Constraints 1 and 2 stated above are dire
tly related to the Uniqueness Prin
iple of the Dependen
y

Grammar. However, a

ording to some linguisti
 theories (e.g. Word Grammar), su
h a prin
iple

seems to be too strong, sin
e it does not permit to deal with some spe
i�
 linguisti
 phenomena.

In order to properly analyse su
h phenomena, it would be useful to write
omplex rules without

taking into a

ount Uniqueness and then the two
onstraints stated above. DepPattern allows two

spe
ial environments within whi
h both
onstraints are not applied: 'blo
s of rule' and operator

'NoUniq'

1.6.1 Blo
ks of rules

The �rst environment without Uniqueness Prin
iple is
alled a �Blo
k of rules� (or �Blo
k�). De-

pendent nodes are only removed at the end of the Blo
k.

The syntax of a Blo
k is the following:

Rule-1

NEXT

Rule-2

NEXT

.

.

.

Rule-N

%

A Blo
k allows two di�erent tasks: on the one hand, it identi�es as many dependen
ies as rules

it
ontains, and on the other, it removes the dependent tags only after having applied all rules

of the Blo
k. So, it identi�es the main head of the Blo
k, i.e., the only tag that does not play

the role of dependent in any rule. Let's see an example. Take the expression �movie that I see�,

transformed in the following string:

1.7. MORE OPTIONAL OPERATORS 13

movie_NOUN_<...> that_PRO_<...> I_PRO_<...> see_VERB_<...>

To analyze this expression, we propose the following Blo
k of 3 rules:

DObje
tLeft : [NOUN℄ PRO<type:R> [PRO<type:P>℄ VERB

NEXT

Subje
tLeft : [NOUN℄ [PRO<type:R>℄ PRO<type:P> VERB

NEXT

Adjun
tRight : NOUN [PRO<type:R>℄ [PRO<type:P>℄ VERB

%

Ea
h rule identi�es a spe
i�
 dependen
y. The �rst one identi�es the dire
t obje
t relation

between the relative pronoun �that� and the verb �see�. The se
ond rule identi�es the personal

pronoun �I� as being the subje
t of the verb. And the third rule links the nominal ante
edent

(�movie�) with the verb of the relative
lause (�see�), whi
h is its right adjun
t. As the noun is

the main head of the Blo
k, the other dependent
onstituents are removed. The removal of all

dependents is only performed at the end of the Blo
.

The rule where the main head of the Blo
k a
tually plays the role of head (so, it is not a

ontext tag) must be the last one of the blo
. Otherwise, it would be di�
ult to identify the main

head. In sum, when all the rules of a blo
k are applied, all tags that were not always
ontextual

or that are not the head in the last rule of the blo
k are removed from the sear
h spa
e.

1.6.2 NoUniq environment

If the linguist wishes to de�ne a rule without removing the dependent node, he/she
an use the

NoUniq operator. For instan
e:

Dire
tObje
tR : VERB NOUN

NoUniq

%

This rule does not remove the NOUN tag from the sear
h spa
e.

It is also possible to de�ne a rule where both �head� and �dependent� are removed. For this

purpose, the �Remove� operator was de�ned:

Dire
tObje
tR : VERB NOUN

Remove

%

This rule removes both the VERB and NOUN tags from the sear
h spa
e.

1.7 More optional operators

Rules
an be enri
hed with 4 additional operators: Re
ursivity, Agreement, Add, and Inherit.

1.7.1 Re
ursivity

In some
ases, a rule or grammati
al stru
ture requires to be applied several times to deal with

with re
ursive expressions su
h as, for instan
e, �ni
e red
ar�. In this expressions the noun �
ar� is

modi�ed by two adje
tives in the same way. DepPattern
an deal with this phenomenon in several

ways: using a blo
k of rules, applying twi
e the same rule, or using the operator �Re
ursivity�.

The 3 possible representations are the following:

Blo
k of rules:

14 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

Adjun
tLeft : [ADJ℄ ADJ NOUN

NEXT

Adjun
tLeft : ADJ [ADJ℄ NOUN

%

Repetition of the same rule:

Adjun
tLeft : ADJ NOUN

%

Adjun
tLeft : ADJ NOUN

%

Re
ursivity operator:

Adjun
tLeft : ADJ NOUN

Re
ursivity: 1

%

�Re
ursivity� is spe
i�ed by numeri
 values: �1� means that the rule must be applied twi
e.

By default, the value is 0, that is a rule is applied only on
e. This operator permits to spe
i�y

the number of times a rule
an be applied. It allows both a more
ompa
t representation and an

easier
ontrol of rule re
ursivity.

1.7.2 Agreement

In some
ases, both the head and dependent require to share the same values for some of their

features. For instan
e, in Roman
e languages, the adje
tive must agree with the noun in both

gender and number. On
e more, we
an represent agreement in di�erent ways. To allow analysing

expressions su
h as �
o
he rojo� or �
o
hes rojos�, and not in
orre
t ones like �*
o
he roja� or

�*
o
hes rojo�, we
an make use of a very en
umbered representation with 4 rules:

Adjun
tLeft : ADJ<number:S&gender:M> NOUN<number:S&gender:M>

%

Adjun
tLeft : ADJ<number:S&gender:F> NOUN<number:S&gender:F>

%

Adjun
tLeft : ADJ<number:P&gender:M> NOUN<number:P&gender:M>

%

Adjun
tLeft : ADJ<number:P&gender:F> NOUN<number:P&gender:F>

%

However, DepGrammar also allows using the operator �Agreement� whi
h take as arguements

the features involved in the agreement operation:

Adjun
tLeft : ADJ NOUN

Agreement: gender, number

%

1.7.3 Add

In some
ases, it
ould be useful to either add a new feature-value to the head or modify the value

of one of its features. These two operations
an be performed by making use of operator �Add�.

For instan
e, the list of morpho-synta
ti
 features used by DepPattern does not
ontain the verb

property �voi
e�. The operator allows to introdu
e a new feature spe
ifying the voi
e of the head

verb (passive or a
tive) after having applied a grammati
al rule. For instan
e,
onsider a pattern

1.7. MORE OPTIONAL OPERATORS 15

identifying a semi-auxiliary verb (dependent) o

urring to the left of a past partiple verb, its head

(as in the expression �was eaten�). Operator �Add�
an be used to assign the passive voi
e to the

head verb:

Spe
i�erLeft: VERB<type:S> VERB<mode:P>

Add: voi
e:passive

%

This new morpho-synta
ti
 information, introdu
ed by a grammati
al rule,
an be used as the

input in further rule appli
ations. Noti
e that Add
an be very useful to
orre
t systemati
 errors

made by the tagger, sin
e it also allows modifying values of existing features.

1.7.4 Inherit

The Inherit operator takes a list of features as input, identi�es the values of the dependent expres-

sion and assigns them to the
orresponding features of the head. That means that this operation

allows the head to inherit the values of some features of the dependent. This operation
an be

used to deal with verbal periphrases. It allows to transfert the morphologi
al properties of a light

verb to the
ontent verb (only if the latter is
onsidered the head). For instan
e, let's assume

that there is a rule analysing �had to work� as a dependen
y between �have� (the dependent) and

�work� (the head), via preposition �to� (the relator):

PeriphrasisLeft: VERB<lemma:have> PRP<lemma:to> VERB

Inherit: mode, tense

%

The Inherit operetor transfers the past tense information from �had� to �work�, whi
h is the head

of the expression. Let's note that the fa
t of
onsidering �work� as the head of the dependen
y is

only one of the possible synta
ti
 representations.

1.7.5 Operators within blo
ks of rules

Re
ursivity
annot be applied to the individual rules of a blo
k. Instead, it is applied on the whole

blo
k when the operator is pla
ed after the last rule.

Agreement
an be applied on the individual rules of a blo
k. Con
erning the use of this

operator, there are no di�eren
es between rules within a blo
 and regular rules.

Add and Inherit only
an be applied on the last rule of a blo
k. The reason is that these

operators are aimed to modify the features of a head and a blo
k only returns the main head.

1.7.6 Summary of operators

The list of operators DepPattern allows the linguist to use are the following:

NoUnique It does not remove the dependent tag. It has no arguments

Remove It removes both the head and the dependent. It has no arguments

Re
ursivity It applies a rule a number N of times before applying the following rule. It has one

argument: an integer.

Agreement It requires the dependent and the head to share the same values with regard to a

list of features. It has one argument: a list of features.

Add It adds a new feature-value to the head. If the feature already exists, it only modi�es the

value of the existing feature. It has one argument: a list of feature-value pairs.

16 CHAPTER 1. DEPPATTERN: DESCRIPTION OF THE FORMALISM

Inherit It allows the head to inherit some values from the dependent. It has one argument: a

list of features (those from the the head inherit the values).

Corr It enables
hanging PoS tags using a unary relation (type �Head�). It will des
ribed latter

in Se
tion 2.2.

1.8 Lexi
al Classes

DepPattern is also provided with a
on�guration �le,
alled �lexi
al_
lasses.
onf�,
ontaining word

sets likely to be used in any rule. Let's see an example: instead of using dire
tly in a rule all those

possible lemmas
onsidered as adverbial quanti�ers, it is more e
onomi
al to de
lare a lexi
al
lass,

alled for instan
e �$Quant�, instan
iated by the
orresponding lexi
al units:

$Quant = very quite more less

$Quant is a lexi
al variable likeky to be used in whatever rule. For instan
e, the rule

Adjun
tLeft : ADV<lemma:$Quant> ADJ

%

states that there is an adjun
t dependen
y between an adverb belonging to the lexi
al
lass $Quant

and any adje
tive at its right.

Any set of words, even a huge list learnt automati
ally from a
orpus,
an be
ome a lexi
al

lass.

1.9 Begin and end of senten
es

To des
ribe patterns taking into a

ount the �rst tag of senten
es, it will be possible to use the

restri
tion <pos:0>. For instan
e:

SubjL : PRO<pos:0> VERB

%

This rule is applied when the subje
t pronoun is the �rst element of the senten
e (position =

0).

It is also possible to use symbol � � � to represent a head that has no dependent elements to

its left (apart from the dependents inserted in the pattern). For instan
e:

SubjL : � NOUN|PRO VERB

%

That means there is only a NOUN or a PRO linked to the verb as a left dependent. There are

not other
omplements or modi�ers linked to the verb in the senten
e appearing to the left of the

nominal subje
t.

It is also possible to use the attribute �pos� to represent any position of a tag. For instan
e,

<pos:3> represents the forth position of a tag.

Finally, the end of a senten
e
an be represented by tag SENT. For instan
e:

SubjR : [PRO<lemma:how>℄ [ADJ<lemma:old>℄ VERB<lemma:be> NOUN|PRO

SENT<lemma:/?>

%

This rule represents the reverted subje
t relation within a interrogative senten
e su
h as �how

old are you?�.

Chapter 2

Examples of Use

2.1 A sample grammar

To give an idea of how a DepPattern grammar
an be built, let's propose the following set of rules:

Adjun
tRight : VERB ADV

Re
ursivity: 1

%

Adjun
tLeft : ADV VERB

Re
ursivity: 1

%

Adjun
tLeft : ADJ NOUN

Re
ursivity: 1

Agreement: number, gender

%

Adjun
tLeft : DT NOUN

Re
ursivity: 1

Agreement: number, gender

%

SubjLeft : NOUN|PRO VERB

Agreement: number, person

%

DObjRight : VERB NOUN|PRO

%

This small grammar is able to
orre
tly analyse expressions su
h as �fast
ars�, whose output

analysis (with �ag -a) is the following:

SENT::<fast_ADJ_0_<number:0|fun
tion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ars_NOUN_1_<number:P|lemma:
ar|gender:0|person:3|type:C|token:
ars|> ._SENT>

(AdjnL;
ar_NOUN_1;fast_ADJ_0)

Fim do parsing...

�a ni
e fast
ar�:

SENT::<a_DT_0_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:a|>

ni
e_ADJ_1_<number:0|fun
tion:0|degree:0|lemma:ni
e|gender:0|type:0|token:ni
e|>

fast_ADJ_2_<number:0|fun
tion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ar_NOUN_3_<number:S|lemma:
ar|gender:0|person:3|type:C|token:
ar|> ._SENT>

17

18 CHAPTER 2. EXAMPLES OF USE

(Spe
L;
ar_NOUN_3;a_DT_0)

(AdjnL;
ar_NOUN_3;ni
e_ADJ_1)

(AdjnL;
ar_NOUN_3;fast_ADJ_2)

Fim do parsing...

�all the ni
e fast
ars�:

SENT::<all_DT_0_<number:0|lemma:all|possessor:0|gender:0|person:0|type:0|token:all|>

the_DT_1_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>

ni
e_ADJ_2_<number:0|fun
tion:0|degree:0|lemma:ni
e|gender:0|type:0|token:ni
e|>

fast_ADJ_3_<number:0|fun
tion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ars_NOUN_4_<number:P|lemma:
ar|gender:0|person:3|type:C|token:
ars|> ._SENT>

(Spe
L;
ar_NOUN_4;all_DT_0)

(Spe
L;
ar_NOUN_4;the_DT_1)

(AdjnL;
ar_NOUN_4;ni
e_ADJ_2)

(AdjnL;
ar_NOUN_4;fast_ADJ_3)

Fim do parsing...

�all the fast
ars run fast�:

SENT::<all_DT_0_<number:0|lemma:all|possessor:0|gender:0|person:0|type:0|token:all|>

the_DT_1_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>

ni
e_ADJ_2_<number:0|fun
tion:0|degree:0|lemma:ni
e|gender:0|type:0|token:ni
e|>

fast_ADJ_3_<number:0|fun
tion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ars_NOUN_4_<number:P|lemma:
ar|gender:0|person:3|type:C|token:
ars|>

run_VERB_5_<number:0|mode:0|lemma:run|gender:0|tense:0|person:0|type:0|token:run|>

fast_ADV_6_<degree:0|lemma:fast|token:fast|> ._SENT>

(Spe
L;
ar_NOUN_4;all_DT_0)

(Spe
L;
ar_NOUN_4;the_DT_1)

(AdjnL;
ar_NOUN_4;ni
e_ADJ_2)

(AdjnL;
ar_NOUN_4;fast_ADJ_3)

(SubjL;run_VERB_5;
ar_NOUN_4)

(AdjnR;run_VERB_5;fast_ADV_6)

Fim do parsing...

�Bill bought a fast
ar�:

SENT::<Bill_NOUN_0_<number:S|person:3|type:C|lemma:bill|token:Bill|gender:0|>

bought_VERB_1_<number:0|mode:0|lemma:buy|gender:0|tense:S|person:0|type:0|token:bought|>

a_DT_2_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:a|>

fast_ADJ_3_<number:0|fun
tion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ar_NOUN_4_<number:S|lemma:
ar|gender:0|person:3|type:C|token:
ar|> ._SENT>

(SubjL;buy_VERB_1;bill_NOUN_0)

(Spe
L;
ar_NOUN_4;a_DT_2)

(AdjnL;
ar_NOUN_4;fast_ADJ_3)

(DobjR;buy_VERB_1;
ar_NOUN_4)

Fim do parsing...

2.2. USING DEPPATTERN TO CORRECT THE POS TAGGED INPUT TEXT 19

�the ri
h man bought yesterday a ni
e fast
ar�:

SENT::<the_DT_0_<number:0|lemma:the|possessor:0|gender:0|person:0|type:0|token:the|>

ri
h_ADJ_1_<number:0|fun
tion:0|degree:0|lemma:ri
h|gender:0|type:0|token:ri
h|>

man_NOUN_2_<number:S|lemma:man|gender:0|person:3|type:C|token:man|>

bought_VERB_3_<number:0|mode:0|lemma:buy|gender:0|tense:S|person:0|type:0|token:bought|>

yesterday_ADV_4_<degree:0|lemma:yesterday|token:yesterday|>

a_DT_5_<number:0|lemma:a|possessor:0|gender:0|person:0|type:0|token:a|>

ni
e_ADJ_6_<number:0|fun
tion:0|degree:0|lemma:ni
e|gender:0|type:0|token:ni
e|>

fast_ADJ_7_<number:0|fun
tion:0|degree:0|lemma:fast|gender:0|type:0|token:fast|>

ar_NOUN_8_<number:S|lemma:
ar|gender:0|person:3|type:C|token:
ar|> ._SENT>

(Spe
L;man_NOUN_2;the_DT_0)

(AdjnL;man_NOUN_2;ri
h_ADJ_1)

(SubjL;buy_VERB_3;man_NOUN_2)

(AdjnR;buy_VERB_3;yesterday_ADV_4)

(Spe
L;
ar_NOUN_8;a_DT_5)

(AdjnL;
ar_NOUN_8;ni
e_ADJ_6)

(AdjnL;
ar_NOUN_8;fast_ADJ_7)

(DobjR;buy_VERB_3;
ar_NOUN_8)

Fim do parsing...

�he really wants another
ar�.

SENT::<he_PRO_0_<number:0|lemma:he|possessor:0|
ase:0|gender:0|person:0|politeness:0

|type:P|token:he|>

really_ADV_1_<degree:0|lemma:really|token:really|>

wants_VERB_2_<number:0|mode:0|lemma:want|gender:0|tense:P|person:3|type:0|token:wants|>

another_DT_3_<number:0|lemma:another|possessor:0|gender:0|person:0|type:0|token:another|>

ar_NOUN_4_<number:S|lemma:
ar|gender:0|person:3|type:C|token:
ar|> ._SENT>

(SubjL;want_VERB_2;he_PRO_0)

(AdjnL;want_VERB_2;really_ADV_1)

(Spe
L;
ar_NOUN_4;another_DT_3)

(DobjR;want_VERB_2;
ar_NOUN_4)

Fim do parsing...

Rules
an be ordered in di�erent ways, sin
e they �ll the basi

onstraints stated berore in

this tutorial. However, to be e�
ient, a DepPattern grammar should be written by
as
ades

of rules representing linguisti
 layers or modules. An optimal grammar should
ontain �rst rules

on
erning adverb phrases, then adje
tive phrases, then nominal phrases, and �nally verb phrases.

2.2 Using DepPattern to Corre
t the PoS Tagged Input Text

DepPattern is provided with tools suited to
orre
t errors of the input PoS tagged text. DepPattern

allows a linguist to elabore synta
ti
 rules in order to
orre
t systemati
 mistakes made by the

PoS tagger. For this purpose, we are provided with 3 new elements:

• A new type of dependen
y, �Head�, whi
h represents a unary relation (arity 1). In the default

on�guration �le, dependen
ies.
onf, we de
lared one type unary relation,
alled �Single�.

• A new operation, �Corr�, whose aim is to
orre
t all information asso
iated to a lexi
al unit:

type of PoS tag and morpho-synta
ti
 features. It is similar to the operation �Add�. The

main di�eren
e is that �Corr� allows to
hange the PoS tag itself.

20 CHAPTER 2. EXAMPLES OF USE

• A new output format obtained using �ag -
. Instead of generating as output the dependen
y

triplets identi�ed by the grammar (�ag -a), we
an use �ag -
 to rewrite the same input, but

ontaining all
orre
tions made by operations su
h as �Corr�, or �Inherit�, or �Add�.

Let's see an example. Suppose that the PoS tagger systemati
ally tag as a subordinate
on-

jun
tion the word that following a noun, even if in this
ontext that is, in general, a relative

pronoun. To solve the problem, we
an write a rule as follows:

Single : [NOUN℄ CONJ<lemma:that&type:S>

Corr: tag:PRO, type:R

%

This way, the information introdu
ed by the operator �Corr� is used to
hange the head ex-

pression of the unary relation �Single�. It substitutes tag PRO and type R for the information

ontained in the head (tag CONJ and type S). More pre
isely, this rule identi�es as head a subor-

dinate
onjun
tion with lemma that following a noun (its
ontext), and transform this head entry

into a relative pronoun. Noti
e that there there is no dependent expression involved in the rule,

sin
e the relation type of �Single� is Head.

�Corr� also allows
orre
ting attibutes by using the values of other attributes:

Corr: lemma:=token

It means that the value of the lemma is the value of the token. In other words, the lemma

attribute inherits the value of the token attribute.

2.3 Fun
tion Uni
ity

The type of dependen
y �Head�
an also be used to take into a

ount the prin
iple of fun
tion

uni
ity. This prin
iple states that a verb only
ontains one main fun
tion: one Subje
t, one Dire
t

Obje
t, and one Indire
t Obje
t. So, the grammar should prevent of applying the
orresponding

rules more than on
e. To do it, we propose the following strategy. First, we de�ne the following

rule:

Single : VERB

Add: subj:0, dobj:0, iobj:0

%

This means that every verb is provided with 3 new attribute-value pairs (subj:0, dobj:0, and

iobj:0), whi
h represent the fa
t that a verb these 3 fun
tions have not been found yet. Then, all

de�nitions of rules used to identify these fun
tions should
ontain the following information:

SubjL : NOUN VERB<subj:0>

Add: subj:1

%

This rule is applied only if the verb has not another subje
t. Then, the attribute 'subj' is

assigned value 1. Then, this rule
annot be applied again.

2.4 DepPattern and Pattern Grammar

DepPattern is a formalism
ombining notions of both Dependen
y Grammar and Pattern Gram-

mar.

The main aim of Pattern Grammar is to identify meaningful patterns asso
iated to words. The

meaningful patterns of a word
an be de�ned as all the words and stru
tures whi
h are regularly

asso
iated with the word and whi
h
ontribute to its meaning. A meaninful pattern is identi�ed if

2.4. DEPPATTERN AND PATTERN GRAMMAR 21

a
ombination of words o

urs relatively frequently, if it is dependent on a parti
ular word
hoi
e,

and if there is a
lear meaning asso
iated with it. One of the most relevant assumpations of Pattern

Grammar is that there is no a
lear boderline between both synta
ti
 and lexi
al stru
tures.

A very simple formalism is used to represent meaningful patterns of words in Pattern Grammar.

For instan
e, the meaningful patterns of the verb �explain� would be represented as follows:

V n (explain all the di�erent types)

V wh (explained how it worked)

V about n (explain about the barman)

V n to n (she explained it to you)

V that (she explained that she never paid)

V to n (Alex explained to me)

V to n that (have to explain to their patients that they...)

Where V stands for the lexi
al item to be represented (in this
ase �explain�), symbols 'n',

'wh', 'that' stands for 'noun group', '
lause introdu
ed by a wh-word', and '
lause introdu
ed by

that ', respe
tively. Finally, to and about are other lexi
al items being part of a pattern.

DepPattern is provided with the approppriate tools to represent and identify meaningful pat-

terns of lexi
al words. In order to identify su
h meaningful patterns in DepPattern, we need to

introdu
e dependen
y relationships between words instead of phrasal groups. The spe
i�
 Dep-

Pattern rules written to identify the meaningful patterns of �explain�
ould be the following:

V n DobjR: VERB<lemma:explain> NOUN

V wh ObjL: [VERB<lemma:explain>℄ PRO<type:W> [X℄* VERB

NEXT

DObjR: VERB<lemma:explain> [PRO<type:W>℄ [X℄* VERB

V about n PrepCompR: VERB<lemma:explain> PRP<lemma:about> NOUN

V n to n DobjR: VERB<lemma:explain> NOUN [PRP<lemma:to>℄ [NOUN℄

NEXT

PrepCompR VERB<lemma:explain> [NOUN℄ PRP<lemma:to> NOUN

V that Spe
L: [VERB<lemma:explain>℄ CONJ<lemma:that> [X℄* VERB

NEXT

DObjR VERB<lemma:explain> [CONJ<lemma:that>℄ [X℄* VERB

V to n PrepCompR: VERB<lemma:explain> PRP<lemma:about> NOUN

V to n that Spe
L: [VERB<lemma:explain>℄ [PRP<lemma:to>℄ [NOUN℄

CONJ<lemma:that> [X℄* VERB

NEXT

PrepCompR: VERB<lemma:explain> PRP<lemma:to> NOUN

[CONJ<lemma:that>℄ [X℄* [VERB℄

NEXT

DobjR: VERB<lemma:explain> [PRP<lemma:to>℄ [NOUN℄

[CONJ<lemma:that>℄ [X℄* VERB

These rules should be lo
ated at the begining of the verbal phrase layer, and following adverb,

adje
tive, and nominal rules.

22 CHAPTER 2. EXAMPLES OF USE

Chapter 3

Further Information

3.1 Contributions

Pablo Gamallo Otero and Isaa
 González

Grupo Pro
essamento da L�­ngua NaTural (ProLNaT)

University of Santiago de Compostela

Galiza, Spain

pablo.gamallo�us
.es

23

	DepPattern: Description of the Formalism
	Basic description
	Types of dependencies
	List of PoS tags and list of morpho-syntactic features
	Description of Patterns
	How rules are applied
	Environments without the Uniqueness Principle
	More optional operators
	Lexical Classes
	Begin and end of sentences

	Examples of Use
	A sample grammar
	Using DepPattern to Correct the PoS Tagged Input Text
	Function Unicity
	DepPattern and Pattern Grammar

	Further Information
	Contributions

