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Abstract. In this paper, we will analyze the behavior of several parameters,
namely type of contexts, similarity measures, and word space models, in the task
of word similarity extraction from large corpora. The main objective of thepa-
per will be to describe experiments comparing different extraction systems based
on all possible combinations of these parameters. Special attention will be paid
to the comparison between syntax-based contexts and windowing techniques, bi-
nary similarity metrics and more elaborate coefficients, as well as baselineword
space models and Singular Value Decomposition strategies. The evaluationleads
us to conclude that the combination of syntax-based contexts, binary similarity
metrics, and a baseline word space model makes the extraction much more pre-
cise than other combinations with more elaborate metrics and complex models.

1 Introduction

Most of the existing work on word similarity extraction has in common two properties:
the observation that semantically related words will appear in similar contexts and the
use of word space models built on the basis of such co-occurrence observations. Yet,
the underlying methods can differ in four different aspects: their definition of context,
the way they calculate similarity from the contexts each word appears in, the way they
modify the word space model (singular value decomposition,association values, etc.),
and finally, the algorithm used to perform pairwise word comparisons.

There are many interesting works comparing the accuracy of different approaches
on word similarity extraction. However, most of them are focused only on one parame-
ter of variation. Some compare systems on the basis of the type of context, namely win-
dow and syntactic-based methods [10]. Other compare several similarity measures [5].
Some are interested in testing whether changes in the word space model can improve
the results [13]. And, there is also some work comparing the computational efficiency
of the underlying algorithm [20].

The main contribution of this paper is to compare word similarity systems on the
basis of several parameters or ranges of variation, and not only considering one of
them as it was usual in the literature. For this purpose, fourparameters will be taken
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into account: types of contexts (C), similarity measures (S), strategies to build word
space models (M ), and algorithms to compute similarity between pairwise words (A).
A system is defined as a tuple of 4 elements,(c, s,m, a), wherec is a type of context,s
a similarity measure,m a word space model, anda an algorithm. So, according to this
range of variation, we will define the cartesian product of all possible 4-tuples:

C × S × M × A =

{(c, s, m, a)|c ∈ C and s ∈ S and m ∈ M and a ∈ A}

where each 4-tuple is an evaluable system. In this paper, we will define 3 contexts, 10
similarity coefficients, 3 word space models, and 1 algorithm. As all systems share the
same algorithm, all comparisons will be made among the remaining 3 parameters. As
far as we know, up to now, no work has attempted to compare morethan two parame-
ters of variation against the same corpus. So, the main contribution of this paper is to
compare65 different systems, built from much of all possible triplets(90) containing
C, S, andM .

Another contribution of the paper is to describe a large-scale evaluation including
a new kind of gold standard. In addition to WordNet [7], we will also use as reference
for evaluation a closed terminology, namely a list of propernames annotated with three
sharp categories: countries, capitals, and English towns.The use of such a closed list
as gold standard tries to overcome some of the problems associated with standard the-
saurus, namely the fact that an extraction system can compute many correct word pairs
which are all counted as wrong since they are not in the thesaurus. With the use of a
closed list of all countries, capitals, and English towns, this problem does not arise. For
instance, given a word tagged as being a country, and given the most similar word ex-
tracted by the system, if it this word is not tagged as a country, it is sure that it is not a
country. All words correctly proposed by the system must be in the gold standard and,
therefore, will always be correctly evaluated.

The evaluation described in this paper will lead us to conclude that, on the one hand,
the systems based on syntactic contexts tend to be better than the windowing techniques,
and on the other, it is very difficult to perform better than the simplest metrics and the
baseline word space models.

The remainder of the paper is organized as follows. Section 2enumerates some
works comparing different similarity extraction systems according to only one param-
eter. In Section 3, we describe the different parameters of variation that will be used in
our experiments. And finally, in Section 4, we will introducesome corpus-based exper-
iments, define the evaluation protocol and analyze the results performed by65 systems
against the same corpus (BNC).

2 Related Work

There are much previous work aimed to evaluate and compare different strategies to
extract word similarity. Some compare the influence of different types of contexts. In
[10], a syntax-based method is carefully compared to a windowing technique. The for-
mer is shown to perform better for high-frequency words, while the windowing method



is the better performer for low-frequency words. The experiments performed made use
of very small text corpora, probably due to the low efficiencyof the syntactic techniques
available at that time. Similar experiments were performedmore recently [16, 17, 21].
All of them state that syntax-based methods outperform windowing techniques thanks
to a drastic reduction of noise.

Other works compare the performance of different similarity measures. However,
no agreement has been achieved concerning the best coefficients. In [14], the best per-
formance was reached by the metric defined by the author. In [5], the best one was a
specific version of Dice, and in [2], the best results were obtained by the simplest met-
rics, namely those based on merely counting contexts with non-zero values (i.e., binary
measures).

There exists a large family of experiments comparing standard word space models
to models previously reduced by Singular Value Decomposition (SVD). In [13], the
best results are achieved using SVD, combined with large word contexts defined at the
level of the document. In [22], SVD is outperformed by a more basic word space model.
However, in [19, 15, 3], SVD combined with small window-based contexts outperform
other approaches. In all these experiments, the evaluationuses as gold standard popular
tests as TOEFL where the system has to choose the most appropriate synonym for a
given word given a restricted list of four candidates. To compare the accuracy of two
(or more) methods, it is assumed that the system makes the right decision if the correct
word is ranked highest among the four alternatives. The maindrawback of such an
evaluation derives from the size of the test itself. Each word is compared to only other
three words, and not to many thousands as in more reliable large-scale evaluations.

In addition, there are other works comparing word space models with regard to the
type of association value (or weight) defining word-by-context co-occurrences [5, 2].
Like in the case of similarity metrics, there is no agreementconcerning the best weight
function for word similarity extraction.

Finally, we also can find some work measuring both the complexity and computa-
tional efficiency of the algorithm implemented to make pairwise comparisons [9, 20].
As the accuracy of any extraction system does not depend on the chosen algorithm, we
will not compare systems with regard to this specific parameter.

Unlike the studies sketched above which make comparisons according to one or
in some cases two parameters of variation, in this paper, we will compare different
extraction systems with regard to 3 parameters.

3 Systems and Range of Variation

As has been said above, a system to extract word similarity can be defined as a 4-tuple
consisting of:

– a type of context,
– a similarity measure,
– a word space model defined as a word-by-context co-occurrence matrix,
– an algorithm to compare pairs of words in an efficient way.



3.1 Types of Contexts

The systems we will compare were implemented according to 3 different types of word
contexts. Two types of windowing strategies and one syntax-based method. As far the
windowing strategies are concerned, contexts can be definedusing the immediately ad-
jacent words, within a window ofn words. Two different techniques can be applied:
one defining contexts as bag of words, calledBOW, and the other taking into account
word order (WO). The technique based on bag of words builds context vectorsconsid-
ering simple words as dimensions, regardless of their positions within the window. By
contrast, theWO technique uses word order to define context vectors, which isconsid-
ered to be useful to simulate syntactic behavior. Accordingto Rapp [18], this window
technique is, then, closer to the syntax-based approach.

Our syntactic strategy (SYN) relies on dependency-based robust parsing. Depen-
dencies are generated by means ofDepPattern1, a rule-based partial parser which can
process 5 languages: English, Spanish, Galician, Portuguese, and French. The 5 gram-
mars are very generic, they are constituted by about 20-30 rules each. To extract syntax-
based contexts from dependencies, we used the co-compositional methodology defined
in [8]. TheDepPatterntoolkit also includes a script aimed to extract co-compositional
contexts from the dependencies generated by the parser.

3.2 Similarity Measures

The systems are built using 10 similarity coefficients, which represent much of the
metrics defined in [14, 5, 2]. The simplest measures (suffix “Bin”) transform all vectors
into binary values: binary overlapping (OverBin), binary Dice (DiceBin), binary Jaccard
(JaccBin), and binary Cosine (CosBin). By contrast, Cosine(Cos), Euclidian distance
(Eucl), City-Block (City), Dice (DiceMin), and Jaccard (JaccMin) use vectors with co-
occurrence (or weighted) values. The 10 similarity metricsbetween two words,w1

andw2, are defined in Table 1, whereBIN(w1) stands for a set representation of the
binary vector defining wordw1. This vector is the result of transforming the real-valued
vector with co-occurrences or log-likelihood scores into avector with binary values.
The length‖ BIN(w1) ‖ of a binary vectorBIN(w1) is the number of non-zero
values. On the other hand,A(w1, cj) is an association value of a vector of lengthn,
with j, i, andk ranging from 1 ton. In our experiments, the association value stands for
either the simple co-occurrences of wordw1 with a contextual expressioncj , or a weight
computed using the log-likelihood ratio between the word and its context. For Cosine,
the association values of two words with the same context arejoined using their product,
while for JaccardMin [11, 12] and DiceMin [5, 23] only the smallest association weight
is considered (in those works, they are noted as Jaccard† and Dice†, respectively). For
the Lin coefficient, the association values of common contexts are summed [14], where
cj ∈ C1,2 if and only if A(w1, cj) > 0 andA(w2, cj) > 0. Finally, in City, |x − y|
represents an absolute value. In sum, we use two types of similarity coefficients: those
based on binary vectors (baseline metrics) and those relying on association values.

1 DepPatternis a linguistic toolkit, with GPL licence, which is available at:
http://gramatica.usc.es/pln/tools/deppattern.html
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Table 1.10 similarity measures



3.3 Word Space Models

In our experiments, we evaluate the performance of three different types of word space
models. First, we callCOOC the simplest method that takes as input a sparse matrix
containing only word-by-context co-occurrences. This is the baseline model. No further
operation was applied on the baseline matrix before computing word similarity.

The second method, calledSVD, requires a dense matrix reduced by Singular Value
Decomposition. Dimensionality reduction was performed with SVDLIBC.2. Before re-
duction, co-occurrence values were transformed into log-likelihood scores, as in most
approaches to Latent Semantic Analysis [13].

The third method, calledBORDAG, was defined in [2], and consists of the following
tasks: all co-occurrences are weighted values (log-likelihood) and are ranked by de-
creasing significance. Then, only theN best ones are selected (whereN = 200 in our
experiments). This way, each word is associated, at most, with 200 non-zero weighted
values. Given that corpus frequency follows the power-law distribution, only very fre-
quent words co-occur with more than200 other words. Even if such a filtering strategy
only affects very frequent words, it allows us to reduce the number of pairwise com-
parisons (and thus runtime) significantly, while hopefullynot decreasing accuracy with
regard to the baseline model.

3.4 Algorithm

The naive algorithm to extract word similarity looks at eachword and compares it with
each other word, checking all contexts to see if they are shared. Complexity is quadratic.
Yet, it is possible to make the algorithm simpler. Because ofthe power-law distribution
of word-context co-occurrences, most word pairs have nothing in common. So, there
is no reason to check them. Following [9, 20], we implementedan algorithm that only
compares word pairs sharing at least one context. As the listof words sharing a context
is small (in general, less than1000), the quadratic complexity of the entire algorithm
turns out to be manageable.

4 Experiments and Large-Scale Evaluation

Given the parameters of variation described in the last section and the cartesian product
of all possible 4-tuples, we could evaluate3 × 10 × 3 × 1 systems, that is, 90 different
strategies to extract word similarity. However, because ofthe computational complexity
derived from SVD reduction, we only combined this word spacemodel with one type
of context, namelyBOW (Bag Of Words). Moreover, as the matrices reduced with SVD
do not allow similarity computation with binary metrics, atthe end, we evaluate just
65 extraction systems. For instance,SYN-DiceBin-COOCstands for a system constituted
by a syntactic-based context (SYN), a binary dice metric (DiceBin), and a simple word-
by-context coocurrence matrix (COOC). To simplify, the name of each system is not
provided with the specific algorithm, since it will not be evaluated. We also can use
names to refer to sets of systems. For instance,SYN-COOCrepresents all systems made

2 http://tedlab.mit.edu/ ˜ dr/svdlibc/



of syntactic contexts and co-occurrences, whileSYN represents the more abstract set
containing all syntax-based systems.

4.1 Corpus and Gold Standards

The experiments were performed on the British National Corpus (BNC)3 corpus, con-
taining about100 million word tokens. For evaluation, we selected the15, 000 most
frequent proper names, on the one hand, and the10, 000 most frequent common nouns,
on the other. These are the target words to be evaluated. Proper names are evaluated
taking as gold standard a closed list of countries, world capitals, and English towns4.
This list contains1610 names, each with a specif tag. Some (very few) contain more
than one tag. For instance,Londonis both a world capital and an English town. Let’s
note that here the similarity relation is quite narrow. It isrestricted to the relation of
direct co-hyponymy, e.g.,Englandis similar toChinabecause they are both countries.
By contrast,England is not related toLondon. 749 out of 1610 terms of the list are
among the15, 000 most frequent proper names in the BNC corpus. With the use of a
closed list of related terms, we are sure that all similar words correctly proposed by a
system are in the gold standard and, then, are correctly evaluated. Using Wordnet, how-
ever, many similar words that were correctly proposed by thesystem may not be in the
gold standard, and consenquently, may be incorrectly considered as wrong.

To evaluate the common nouns, we take as gold standard WordNet [7]. Here the no-
tion of similarity is larger than in the previous gold standard. The set of similar words
of a given word is constituted by all those related to it by anydirect semantic relation-
ship (synonymy, meronymy, hyperonymy, . . . ), and indirectly, by those co-hyponyms
selected from its hyperonyms at the first level.6, 943 common nouns from WordNet
were found among the10, 000 most frequent ones in the corpus.

Given the15, 000 most frequent proper names and the three types of contexts de-
fined above, we build three15, 000-by-15, 000 word-by-context co-occurrence matrices
with proper names and contexts of proper names. Contexts arealso the15, 000 most
frequent ones. They change according to the type of context selected to build the sys-
tem. For instance, if the type of context is defined from syntactic dependencies, the
matrix contains the15, 000 most frequent syntactic contexts of proper names. So, the
generated matrices are constituted by the same target words(the most frequent proper
names), but they differ in the contexts: syntax-based, wordorder or bag of words. The
same is done with the10, 000 most frequent common nouns: we build three10, 000-
by-10, 000 word-by-context co-occurrence matrices with common nounsand contexts
of common nouns. All these matrices represent the baseline word space model (COOC),
from whichBORDAG andSVD are derived. Previous tests led us to select15, 000-by-
300 and10, 000-by-300 as those reduced matrices giving the optimal results for SVD-
based systems.

3 http://www.natcorp.ox.ac.uk/
4 AUTHOR-URL



4.2 Evaluation

To evaluate the quality of all tested extraction systems, weelaborate an automatic and
large-scale evaluation protocol with the following characteristics. Each system provides
for each target word (proper name or common noun of the input matrix), a ranked list
with its top-10 most similar words. A similar word of the ranked list is considered a true
positive if it is related in the gold standard to the target word. For instance, ifChina is
in the top-10 ranked list ofEngland, and both proper names are tagged with the same
tag (country) in the gold standard, thenChina is counted as a true positive. To measure
the quality of each system, we use “mean Average Precision” (mean-AP) [4]. Average
Precision (AP) consists in evaluating the average quality of the ranking produced for
each test word. More precisely, it is the average of the precision scores at the rank
locations of each true positive. Assuming a word containsN similar words extracted
by the system, in whichK are true positives, andpi the rank of i-th positive, AP is:

AP =
1

N

k∑

i=1

i

pi

Note thati/pi is just the precision value at the i-th positive in this iterative process.
Let’s see an example. If 2 out 10 ranked words were found at ranking positions 2 and 5,
the AP in percent in this case is:1/10∗(1/2+2/5)∗100 = 9%. 100% is achieved when
the 10 ranked words are related to the test word in the gold standard. Mean Average
Precision is the sum of average precisions divided by the number of evaluable words
(i.e., words occurring in both the gold standard and the training corpus):

mean-AP=
1

n

n∑

i=1

APi

wheren, the number of evaluable words, is749 in the case of proper names, and6, 943
for common nouns.

4.3 Results

Tables 2 and 3 shows the mean-AP scores obtained for all systems using respectively
the15, 000 most frequent proper names and the10, 000 most frequent common nouns.
Each column represents a combination between a type of context and a word space
model, while rows stands for the 10 similarity metrics introduced above in 3.2. The best
score in Table 2 is59.04%, achieved by the systemSYN-OverBin-BORDAG. In Table 3
the best mean-AP value merely achieves16.54%, obtained bySYN-CosineBin-BORDAG.
Even if the two tables differ significantly in the scale of their values, most systems have
a similar behavior across the two evaluations. The main exception corresponds to the
SVD-based systems (BOW-SVD), which are the only systems whose mean-AP scores
improve when they are evaluated using WordNet (Table 3).



METRIC SYN-COOC WO-COOC BOW-COOC SYN-BORDAG WO-BORDAG BOW -BORDAG BOW-SVD

CityBlock 5.24 2.7 17.77 4.17 1.88 5.58 3.01
CosineBin 50.06 50.62 47.62 47.85 39.25 38.96
Cosine 36.50 10.55 39.08 32.67 11.09 34.77 3.56
DiceBin 50.68 46.68 46.58 49.25 38.66 38.97
DiceMin 47.55 18.31 43.40 45.77 15.54 43.69 2.88
Euclidean 16.92 7.63 17.93 18.73 6.91 18.99 2.96
JaccBin 50.68 46.68 46.58 49.25 38.66 38.97
JaccMin 47.55 18.31 43.40 45.77 15.54 43.69 3.20
Lin 23.57 8.86 25.48 24.51 8.11 25.34
OverBin 46.52 28.39 30.43 59.04 41.86 38.99

Table 2.Mean-AP of Proper Names using as gold-standard a list of countries, capitals, and towns.

METRIC SYN-COOC WO-COOC BOW-COOC SYN-BORDAG WO-BORDAG BOW -BORDAG BOW-SVD

CityBlock 2.53 0.56 3.78 0.90 0.33 1.45 3.79
CosineBin 15.18 11.50 8.74 16.54 3.74 12.83
Cosine 7.86 1.26 11.32 6.99 1.4 10.98 7.00
DiceBin 12.97 10.14 8.11 16.22 3.74 12.83
DiceMin 11.23 2.76 7.28 12.65 1.80 11.76 4.84
Euclidean 2.64 0.98 2.78 2.71 0.91 3.63 3.37
JaccBin 12.97 10.14 8.11 16.22 3.74 12.83
JaccMin 11.23 2.76 7.28 12.65 1.80 11.76 5.76
Lin 5.88 2.71 6.29 5.68 1.27 10.61
OverBin 5.97 4.07 4.32 16.42 3.69 12.83
Table 3.Mean-AP of common nouns using WordNet as gold-standard.



4.4 Ranking of systems

To interpret the results, instead of using test of significance looking for statistically
different and similar groups of systems, we prefer ranking them using the mean of the
two evaluations. For this purpose, mean-AP values are first normalized. Table 4 shows a
sample of the 65 systems ranked by the mean of the normalized values. Notice that the
best systems in the ranked list are based on syntactic contexts, binary similarity metrics,
and theBORDAG word space model. Surprisingly, the system with the best score uses
the simplest similarity metric (OverBin), which merely counts the number of contexts
shared by the compared words. Systems with window-based contexts and metrics with
association values appear at the bottom of the list.

Rank System Mean
1 SYN-OverBin-BORDAG 0.99
2 SYN-DiceBin-BORDAG 0.90
3 SYN-JaccBin-BORDAG 0.90
4 SYN-CosineBin-BORDAG0.90
5 SYN-CosineBin-COCC 0.88
6 SYN-JaccBin-COCC 0.82
7 SYN-DiceBin-COCC 0.82
8 WO-CosineBin-COCC 0.77
9 SYN-DiceMin-BORDAG 0.76
10 SYN-JaccMin-BORDAG 0.76
. . . . . . . . .
20 WO-JaccardBin-COCC 0.69
25 BOW-Cosine-BORDAG 0.62
30 BOW-Lin-BORDAG 0.53
35 BOW-Lin-COOC 0.43
40 WO-OverBin-COCC 0.35
45 BOW-Cosine-SVD 0.22
50 BOW-JaccardMin-SVD 0.18
55 WO-Cosine-BORDAG 0.11
60 WO-Euclidean-COCC 0.07
65 WO-CityBlock-BORDAG 0.02

Table 4.Ranking of systems.

It is also possible to rank separately the different parameters of variation underlying
the evaluated systems. Table 5 shows the mean and variance ofeach metric. Given a
metric, we compute the average score obtained across all systems based on this metric.
From this point of view, the best metric is now CosineBin. Let’s note that the four
binary metrics are at the top of the ranked list. This is in accordance with the evaluation
described by Bordag [2], but not with other related work, such as [5], where DiceMin
was considered as the best coefficient. In [14], no binary metric was evaluated. We think,
however, that the evaluation described by Curran and Moens [5] is not entirely reliable.
In their work, equivalent metrics, like DiceMin and JaccMinor DiceBin and JaccBin,
achieved very different precision scores. This is not in accordance with the fact that



Jaccard and Dice coefficients should tend to yield the same similarity performance for
any word. The Dice and Jaccard measures are fully equivalent, i.e., there is a monotonic
transformation between their scores [6]. Notice that in ourevaluation this pair of metrics
produces almost always the same scores. It follows that our results are close to those
expected by the theory. As far as the standard deviation (σ) is concerned, the table also
shows how it increases from the top to the bottom of the list. The best metrics are then
more stable across the different systems since they behave in the same way regardless
of the context or model being used. Finally, Euclidean and CityBlock distances are not
suited at all to deal with word similarity extraction.

Table 5 also shows the ranking of contexts and models. Whereassyntax-based con-
texts (SYN) perform clearly better than the two types of window-based contexts, the
difference betweenBORDAG and the baseline model (COCC) is very small. Even if the
best systems are based on theBORDAGmodel, its high standard deviation makes it quite
instable. In particular, when it is combined with contexts of type WO the performance
decreases in a significant way. By contrast, the word space model based on simple co-
occurrences is more regular and stable, as we can infer from its low standard deviation.
Very far from the scores achieved by these two models, we findSVD. Latent infor-
mation resulting of factorization by Singular Value Decomposition, such as high-order
co-occurrences, do not help to improve the task of word similarity extraction.5

Metric Mean σ

CosineBin 0.72 0.07
DiceBin 0.70 0.09
JaccBin 0.70 0.09
OverBin 0.58 0.18
JaccMin 0.48 0.26
DiceMin 0.47 0.27
Cosine 0.39 0.37
Lin 0.31 0.47
Euclidean 0.16 0.70
CityBlock 0.08 0.80

Context Mean σ

SYN 0.60 0.48
BOW 0.46 0.96
WO 0.28 0.90

Model Mean σ

BORDAG 0.48 0.94
COCC 0.47 0.64
SVD 0.15 0.71

Table 5.Ranking of metrics, contexts, and models.

5 To be sure that our SVD-based systems were well implemented, we madea comparison with
the LSA strategy underlying Infomap (http://infomap-nlp.sourceforge.net/ ).
We used as training corpus a small sample of proper names from BNC. There were no sig-
nificant differences between the results achieved with our systems and those obtained with
Infomap.



5 Conclusions

The main contribution of this paper is to compare65 different systems to extract word
similarity under controlled circumstances by means of a large-scale evaluation, and by
taking as gold-standard, both WordNet and a large list of proper names classified in
three semantic categories.

The results of the experiments leave no doubt that, at least,for the task at stake and
for the most frequent words of a corpus, the simplest similarity coefficients, based on
binary values, are much more precise than more complex metrics requiring association
values. This is not far from the main conclusions drawn by Bordag [2] from different ex-
periments. In addition, syntactic contexts perform betterthan those based on windowing
techniques (with or without taking into account word order). This is also in accordance
with most experiments comparing both types of contexts. Regarding the word space
model, it seems that Bordag-based systems performs slightly better than those based
on basic co-occurrences, but differences are actually verysmall. SVD-based models,
however, are much less precise in their results. So, to compute word similarity, it turns
out to be difficult to overcome those systems relying on baseline strategies, namely
those using binary metrics and simple co-occurrence matrices. Only dependency-based
information seems to be more precise than more basic contexts based on windowing
techniques.

Given that the syntactic parser used in our experiments onlywas constituted by
very few rules (about20), there is still room for improvement. In future work, we will
compare the efficiency of different sets of syntactic-basedcontexts by integrating them
in baseline systems with basic metrics and basic word space models. A different strategy
to improve results would be to explore other theoretical paradigms for modeling new
types of contexts and different word spaces, such as the proposal described in [1].
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